簡易檢索 / 詳目顯示

研究生: 梁譽瀚
Liang, Yu-Han
論文名稱: 以射頻磁控濺鍍法製作氧化鋅奈米點結構及其特性分析
Fabrication and characteristics of ZnO nanodots by RF magnetron sputter
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 79
中文關鍵詞: 奈米點濺鍍
外文關鍵詞: nanodot, sputter
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低維度的氧化鋅奈米材料具有極佳的量子侷限效應並展現出與塊體材料截然不同的特性,因此,近年來氧化鋅奈米材料已逐漸受到產、學、研界的重視。但對於現階段氧化鋅的成長而言,幾乎所有的氧化鋅奈米結構的製作都以化學氣相沉積為主,並缺乏一些簡單且穩定的物理氣相沉積製程來製作氧化鋅的奈米結構。
    於本論文中,我們利用一種新穎的方式來製作鋅或氧化鋅的奈米點及六角面金字塔狀的氧化鋅顆粒,且製程中僅使用射頻磁控濺鍍;在濺鍍的過程中,利用氫氣與氬氣混合物的還原氣氛或藉由製程參數條件的控制,例如:基板偏壓及成長的溫度等,使得以合成高品質的鋅或氧化鋅奈米點與六角面金字塔狀的氧化鋅顆粒於矽基板上。此外,我們後續利用熱化學氣象沉積的方式於六角面金字塔狀的氧化鋅顆粒頂部合成滲雜鋁的氧化鋅二維柱狀或線狀奈米結構;由於降低表面能的驅動下,使奈米柱會優先於在氧化鋅顆粒的頂端開始成核並沿著ZnO [0001]的優選方向成長。零維及一維的氧化鋅奈米結構,其成長機制及光學特性分析將在本研究中深入的探討。
    利用射頻磁控濺鍍或搭配化學氣象沉積的方法,來製作高品質的氧化鋅點狀及線狀的奈米材料,將有助於應用在奈米光電元件上,並提供產業界一種簡單且穩定的製程。

    Low dimensional ZnO materials have been popularly investigated in the recent years because of remarkable quantum confinement effects and optoelectrical properties than the bulk counterpart. Until now, ZnO nanostructures are almost fabricated by chemical vapor deposition, and a simple and reliable process for fabricating ZnO nanostructures by physical vapor deposition is still lacking.
    In this study, we report on the fabrication of Zn/ZnO nanodots and ZnO hexagonal pyramids directly on silicon substrates only by RF magnetron sputtering. In this process, we utilized Ar/H2 mixture gas as reaction plasma and/or precisely controlled the process parameters, such as substrate bias and growth temperature…etc., to fabricate the high quality Zn/ZnO nanodots and ZnO hexagonal pyramids on silicon substrates. Furthermore, we successfully grow one dimensional Al-doped ZnO nanorods or nanowires on the tips of the ZnO hexagonal pyramids by chemical vapor deposition. In order to reduce the surface energy, nanorods or nanowires were preferentially nucleated on the tips of the pyramids and grown along the c-axis of wurzite structure. In this work, the growth mechanism and optical properties of the high quality zero- and one- dimensional ZnO nanostructures are measured and discussed.
    The well-adopted method of RF magnetron sputter or along with chemical vapor deposition to fabricate high quality Zn/ZnO nanodots and well-aligned Al-doped ZnO nanorods can be applied in nano-optoelectronic devices, and provides a simple and reliable process for industrial applications.

    Abstract......I Chinese Abstract......II Acknowledgement......III Table of Contents......IV List of Figures......VI List of Tables......X Chapter 1 Introduction 1 1.1 Introduction to semiconductor quantum dots......1 1.2 The development of ZnO nanodots......5 1.3 Motivation......7 Chapter 2 Background......8 2.1 The methods of fabricating ZnO nanodots......8 2.1.1 The basic theory of sputtering......9 2.1.2 The theory of film formation......14 2.2 The microstructure and properties of ZnO......16 2.2.1 Theoretical model of idealized ZnO crystal growth......19 2.3 ZnO reactions with hydrogen......20 Chapter 3 Self-assembled Zn / ZnO nanodots grown by RF magnetron sputtering......22 3.1 Equipments......22 3.2 Experimental processes......23 3.2.1 Wafer cleaning process......23 3.2.2 Sputtering parameters and Sample analysis......24 3.3 Fabrication of Zn nanodots / nanoparticles......26 3.3.1 Grown with 7%H2/Ar plasma......26 3.3.1.1 Compositional analysis......30 3.3.1.2 Structure analysis......36 3.3.2 Grown with pure Ar plasma......43 3.4 Fabrication of ZnO nanodots / nanoparticles......45 3.4.1 Surface morphology......45 3.4.2 Compositional analysis......46 3.4.3 Optical properties......48 3.5 Discussion of Growth mechanism......49 3.6 Summary......51 Chapter 4 Well-aligned Al-doped ZnO nanowires grown on ZnO hexagonal pyramids......52 4.1 Experimental processes......52 4.2 Results and Discussion......54 4.2.1 Self-organized ZnO hexagonal pyramids grown by RF magnetron ......54 4.2.1.1 Surface morphology......54 4.2.1.2 Compositional analysis......55 4.2.1.3 Structure analysis......56 4.2.1.4 Discussion of Growth mechanism......59 4.2.2 Well-aligned Al:ZnO nanowires grown on ZnO hexagonal pyramids......63 4.2.2.1 Surface morphology......65 4.2.2.2 Structure analysis......68 4.2.2.3 Discussion of the growth mechanism......69 4.2.2.4 Cathodoluminescence (CL) analysis......71 4.3 Summary......73 Chapter 5 Conclusion......74 Chapter 6 Future Work......77 References......78

    [1] Quantum dot lasers, Ustinov, M. Victor, 2003.
    [2] Quantum dots, E. Borovitskaya, M.S. Shur, 2002.
    [3] X. Wang, F. Zhao, P. Xie, Chem. Phys. Lett. 423, 361 (2006).
    [4] H. R. Zeller and I. Giaever, Phys. Rev. 181,789 (1969).
    [5] H. Schweizer, U.A. Griesinger, and V. Haerle, Proc. SPIE 2399, 407 (1995).
    [6] Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
    [7] S.T. Tan, X.W. Sun, and X.H. Zhang, J. Cryst. Growth 290, 518 (2006).
    [8] 施敏,張俊彥,半導體元件物理與製作技術,高立圖書有限公司,2001年三版
    [9] J.G. Liu, Z.Z. Ye, J.Y. Huang, L.P. Zhu, and B.H. Zhao, Appl. Phys. Lett. 88, 063110 (2006).
    [10] P. Hoyer, R. Eichberger and H. Weller, Phys. Chem. 97, 630 (1993).
    [11] P. Hoyer and H. Weller, J. Phys. Chem. 99, 14096 (1995).
    [12] C.H. Bae, S.M. Park, S.C.Park and J.S. Ha, Nanotechnology 17, 381 (2006).
    [13] S.W. Kim, S. Fujita, and S. Fujita, Appl. Phys. Lett. 81, 5036 (2002).
    [14] Z. Bi, J.W. Zhang, and X.D.Yang, J. Crys Growth 303, 407 (2007).
    [15] S. Fujita, S.W. Kim, M. Ueda, and S. Fujita, J. Cryst. Growth 272, 138 (2004).
    [16] L. Chen, Z.Q. Chen, and X.Z. Shang, Solid State Commu. 137, 561 (2006).
    [17] Y. Chen, Z. Zhu, and D.M. Bagnall, J. Cryst. Growth 184/185, 269 (1998).
    [18] Y.H. Tong, Y.C. Liu, S.X. Luand, L. Dong, S.J. Chen, and Z.Y. Xiao , J. Sol-Gel Sci. Techn. 30, 157 (2004).
    [19] K. Sue, K. Kimura, K. Murata, and K. Arai, J. Supercrit. Fluid. 30, 325 (2004).
    [20] J. Zhenguo, Z. Shichao, W. Chao, and K. Liu, Mat. Sci. Eng. 117, 63 (2005).
    [21] Handbook of Sputter Deposition Technology, Kiyotaka Wasa, Shigeru Hayakawa, 1991.
    [22] The Material Science of Thin Film, Milton Ohring, 2002.
    [23] B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
    [24] K. Vanheusden, W.L. Warren, C.H. Seager, D. R. Tallant, and J. A. Voigt, J. Appl. Phys. 79, 7983 (1996).
    [25] N. Ohashi, N. Ebisawa, T. Sekiguchi, I. Sakaguchi, Y. Wada, T. Takenaka, and H. Haneda, Appl. Phys. Lett. 86, 091902 (2005).
    [26] B. Aleksandra and Y.H. Leung, Small 2, 944 (2006).
    [27] B. Xiang, P. Wang, X. Zhang, and S.A. Dayeh, Nano Lett., 7, 323 (2007).
    [28] T. Makino, A. Tsukazaki, M. Kawasaki, A. Ohtomo, and H. Koinuma, Japn. J. Appl. Phys. 45, 6346 (2006).
    [29] W.J. Li, E.W. Shi, W.Z. Zhong, and Z.W. Yin, J. Cryst. Growth 203, 186 (1998).
    [30] E. Mollwo, Z. Phys. 138, 478 (1954).
    [31] D. G. Thomas and J. J. Lander, J. Chem. Phys. 25, 1136 (1956).
    [32] C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).
    [33] M. Sano, K Miyamoto, H. Kato, and T. Yao, J. Appl. Phys. 95, 5527 (2004).
    [34] J. E. Gregory, R. Aimee, and F. W. J. Charles, Thin Solid Films 308/309, 56 (1997).
    [35] R. Groenen, M. Creatore, and M.C.M. van de Sanden, Appl. Surf. Sci. 241, 321 (2005).
    [36] B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001).
    [37] C.M. Horwitz, T. Puzzer, and J. Melngailis, J. Vac. Sci. Technol. B 11, 1895 (1993).
    [38] Y. Jiang and Q.A. Huang, Semicond. Sci. Technol. 20, 524 (2005).
    [39] J. L. Rouviere, J. Simon, N. Pelekanos, B. Daudin, and G. Feuillet, Appl. Phys. Lett. 75, 2632 (1999).
    [40] H.X. Jiang, J.Y. Lin, and K.C. Zeng, Appl. Phys. Lett. 75, 763 (1999).
    [41] Y. Gao, T. Fujii, and R. Sharma, Jap. J. Appl. Phys. 43, L637 (2004).
    [42] R.A. Laudise and A.A. Ballman, J. Phys. Chem. 64, 688 (1960).
    [43] X. Zhou, Z.X. Xie, and Z.Y. Jiang, Chem. Commun., 44, 5572 (2005).
    [44] K. Vanheusden, W.L. Warren, and C.H. Seager, J. Appl. Phys. 79, 7983 (1996).
    [45] H.J. Fan, F. Bertram, A. Dadgar, J. Christen, A. Krost, and M. Zacharias, Nanotechnology 15, 1401 (2004).
    [46] H. W. Lee, S. P. Lau, and Y. G. Wang, J. Cryst. Growth 268, 596 (2004).
    [47] E. Burstein, Phys. Rev. 93, 632 (1982).
    [48] B.E. Sernelius, K.F. Berggren, Z.C. Jin, I.Hamberg, and C.G. Granqvist, Phys. Rev. B 37, 10244 (1987).
    [49] P. D.Yang, H. Q.Yan, and S.Mao, Adv. Funct. Mater., 12, 323 (2002).

    下載圖示 校內:2012-07-21公開
    校外:2012-07-21公開
    QR CODE