簡易檢索 / 詳目顯示

研究生: 林素如
Lin, Shu-Ju
論文名稱: 利用異質界面高分子材料於可撓式光介電泳晶片及其在微粒子操控之應用
Manipulation of Micro-Particles by Flexible Optically-Induced Dielectrophoretic Devices Fabricated by Bulk-Heterojunction Polymers
指導教授: 李國賓
Lee, Gwo-Bin
共同指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 110
中文關鍵詞: 光介電泳力微粒子分選異質界面高分子可撓式晶片微流體系統微機電系統
外文關鍵詞: optically-induced dielectrophoretic (ODEP), particle separation, bulk-heterojunction polymer, flexible chips, microfluidics, micro-electro-mechanical system (MEMS)
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究利用高分子當作為光介電泳晶片的材料以及可撓性薄膜作為基板,並應用在相關的細胞及奈米微珠的操控,其中研究主題包含了材料光電轉換機制、晶片製程參數,及晶片效能提升。首先,文中以一個嶄新的材料及可撓式基板來操控奈米微珠,利用投射出之光線移動奈米微珠到指定之位置,並且彎曲晶片來測試不同彎曲角度對奈米微珠操控所需的光介電泳力之比較及提升。此晶片之主動層結構不是使用常見的非晶矽,而是由P3HT/PCBM所構成的異質界面高分子薄膜,利用溶液製程,將光主動層旋轉塗佈至可撓性基板上。整個實驗製程是在低溫下進行並且沒有使用非晶矽之電漿輔助化學氣相沉積之薄膜摻雜步驟。當以一投影機光源照射至單層異質界面結構之材料時,此時因電子施體(Donor)-受體(Acceptor)間之接觸面積較大,當材料吸收光能轉換為激發子(Exciton)後,能有效地被分離(dissociation)成電子與電洞,在主動層中的電子與電洞將引至不均勻電場來對細胞或微粒子進行操控。利用電腦軟體先設計好所要投影至晶片之動畫,並將之投射至可撓性異質界面高分子光介電泳晶片上,所誘發產生之虛擬電極將產生負光介電泳力,利用此現象可用來對生物體進行操控。同時也針對高分子膜厚對整體效能進行分析及研究,並且由於在配置高分子溶液時將溫度調至40 °C,故高分子膜厚可以增加至763 nm當高分子濃度是5 wt%的情況下。另外使用不同寬度、顏色、光強度之光線照射和施加之電壓於可撓性晶片,探討之效應並找出最佳實驗參數。並且探討高分子材料和不同高分子膜厚之紫外線可見光吸收光譜。彎曲可撓性晶片至凸型或凹型晶片時,能使分離不同大小尺寸之奈米微珠或收集奈米微珠之效應更有效率並且更加快速。40 μm奈米微珠在特定時間內之移動距離增加了150 %,從43.0±5.0 μm (平板晶片) 增至 112.3±3.0 μm (凸型晶片),加上了重力的輔助會使奈米微珠沿著彎曲晶片之斜面滑落,可達到快速分離不同大小之奈米微珠或收集相同大小之奈米微珠,此可撓性異質界面高分子光介電泳晶片位生物醫學應用提供了一個理想平台。此可撓性高分子晶片可用連續捲軸式之製程和大面積塗佈之步驟並輔以噴墨壓印技術,快速產生大量成品。不僅如此,主要的便利性是低價之優點可使晶片變成可拋棄式之型態使用於生物醫學的應用上。除此之外,可撓性基板可以輕易地變換型態以達到不同型態之操控生物體之需求,因此比起非晶矽之光介電泳晶片有更多樣化的功能。

    This study presents a novel technology to manipulate micro-particles with the assistance from flexible, polymer-based, optically-induced dielectrophoretic (ODEP) devices. These ODEP devices were made of a thin-film bulk-heterojunction polymer, instead of the usual amorphous silicon (a-Si), by a solution-based, spin-coating process as the photoactive layer on a flexible indium-tin-oxide/plastic substrate. A thin film of a bulk-heterojunction (BHJ) polymer, a mixture of regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM), was used as a light-activated layer. When illuminated by a projected light beam, the photo-induced charge carriers, created by the electron transfer of excitons at a donor/acceptor interface in the BHJ layer, disturbs the uniformly-distributed electric field applied on the ODEP devices. A negative DEP force was then generated by virtual electrodes defined by the optical images generated from a computer-programmable projector to manipulate micro-particles, thus providing a flexible platform for particle manipulation. The entire fabrication was a low temperature process and no sophisticated thin-film processing techniques, such as a plasma-enhanced chemical vapor deposition step for a-Si, were required to prepare the polymer layer. Bending the flexible ODEP devices downwards or upwards to create convex or concave curvatures, respectively, enables the more effective separation or collection of micro-particles with various diameters. The travel distances of polystyrene beads with 40 μm diameters, as induced by the projected light during a given time period, was increased by ~150 %, which quantitatively were 43.0± μm and 112.3±3.0 μm for flat and convex ODEP devices, respectively. The rapid separation or collection of micro-particles can be achieved with the assistance of gravity because the falling polystyrene beads followed the inclination of the downwardly or upwardly bent ODEP devices, which could make this an ideal platform for biomedical applications. The fabrication of flexible polymer-based chips can be achieved by a continuous roll-to-roll and large-area coating processes, making them practical for mass production. Furthermore, the low-cost advantage enables the chips to be disposable, a major convenience in biological applications. The effect of the polymer thickness, applied voltage, scanning line width and scanning line color on the magnitude of the generated ODEP force in flat ODEP devices has been extensively investigated. Also the effect of scanning line width, optical power and curvature on the travel distance in curved ODEP devices was experimentally verified. The ultraviolet-visible (UV-Vis) absorption spectrum of the P3HT:PCBM film and the effect of various film thicknesses was also measured. Additionally, the flexible substrates can be easily deformed to optimally enhance and to fulfill the different manipulation requirements for micro-particles in various applications, thus demonstrating functionalities that are superior to those of a-Si-based ODEP devices.

    Abstract ..................................................I 摘要 .....................................................IV 致謝 .....................................................VI Table of Contents.......................................VIII List of Tables..........................................XIII List of Figures...........................................XV Abbreviation...........................................XXIII Nomenclature............................................XXVI Chapter 1 Introduction 1.1 Introduction to MEMS and Microfluidic Technology.1 1.2 Background and Literature Survey.................2 1.2.1 Mechanisms for Cell and Micro-Particle Manipulation..............................................2 1.2.2 Dielectrophoresis (DEP) Force for Separation of Particles.................................................3 1.2.3 Optically-Induced Dielectrophoresis (ODEP) System and Application...........................................6 1.2.4 Optically-Induced Dielectrophoresis (ODEP) Force..8 1.3 The Configuration of the Inorganic Photoconductive Layer.....................................9 1.4 Motivation and Objectives.......................11 1.5 The Format of this Dissertation.................14 Chapter 2 Theory for a Bulk-Heterojunction Polymer Material 2.1 Introduction to Bulk-Heterojunction Polymer Materials................................................20 2.2 The Origin of Conjugated Polymers................21 2.3 The Energy Level Diagram for a Conjugated Polymer..................................................22 2.4 The Mechanism of Carrier Transport................................................23 2.5 The Development of Conjugated Polymer Materials................................................24 2.6 The Development of Bulk-Heterojunction Polymer Materials................................................25 2.7 The Working Principle Behind a Bulk-Heterojunction Polymer..................................................26 2.7.1 Injected Photon is Absorbed by the Organic Material (ηA)............................................26 2.7.2 Diffusion of the Exciton (ηED)..................26 2.7.3 The Separation of Electron-Hole Pairs...........27 2.7.4 The Transportation of Electronic Charge (ηtr) and the Collection Electrode Efficiency of Carriers (ηcc)....28 2.8 The Material of the Electron Donor and Electron Acceptor.................................................29 2.8.1 The Annealing Treatment of the Active Layer.....29 2.8.2 Electron Donor and Electron Acceptor Materials..31 2.8.3 Electron Donor Material.........................31 2.8.4 Electron Acceptor Material......................32 2.9 Materials with a Hole Modified Layer.............33 2.9.1 Hole-Collecting Layer (HCL).................... 33 2.9.2 Electron-Collecting Layer (ECL).................35 2.10 The Working Principle and Analysis of Polymer and Amorphous Silicon........................................35 Chapter 3 Design and Experimental Setup 3.1 Introduction.....................................42 3.2 Experimental Materials................................................42 3.3 Cleaning of the Flexible Substrate...............44 3.3.1 The Cleaning Process for a Flexible ITO-PEN Substrate................................................44 3.3.2 Pre-treatment with UV-Ozone.....................45 3.4 Deposition of the Polymer Solution...............46 3.5 Spin Coating on the Hole-Collecting Layer........47 3.6 Crystallization of the P3HT/PCBM Thin Film.......48 3.7 Thermally Evaporate a Water-Oxygen Resistant Barrier..................................................49 3.8 Adhesion Packaging of the Top and Bottom Chips...50 3.9 The Holder for a Flexible Polymer BHJ Device.....50 3.10 Experimental Setup.........................51 3.10.1 Polymer ODEP Chip Manipulation Platform.........51 3.10.2 Virtual Electrodes Generation System............51 3.10.3 Image Acquisition System........................52 Chapter 4 Results and Discussion 4.1 Introduction.....................................63 4.2 The Method to Define the ODEP Force and Curvature64 4.2.1 The ODEP Force on Micro-Particles on Flat Devices..................................................64 4.2.2 The ODEP Force on Micro-Particles on Inclined Planes in the Convex or Concave-Curved Devices..........64 4.2.3 The Curvature of Flexible Devices...............65 4.2.4 The Travel Distance of Micro-Particles in Flat and Bent ODEP Devices....................................66 4.3 The Induced ODEP Force and the UV-Vis Absorption Spectrum in a Flat ODEP Device...........................66 4.4 The Travel Distance of Micro-Particles in Convex and Concave-Shaped ODEP Devices..........................71 4.5 Particle Separation in a Flat and Convex ODEP device...................................................74 4.6 Particle Collection in a Concave ODEP device.....76 4.7 The Travel Distance and Total Force in an ODEP Device in Concave, Flat and Convex-Shaped Configurations.77 Chapter 5 Conclusion and Future Work 5.1 Conclusion......................................96 5.2 Future Work.....................................97 References..............................................98 Biography................................................109 Publication List........................................110

    1. C. M. Ho, Y. C. Tai, “Micro-electro-mechanical-systems (MEMS) and fluid flows.” Annual Review of Fluid Mechanics, 30, 579-612, 1998.
    2. S. K. Sia, G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies.” Electrophoresis, 24, 3563-3576, 2003.
    3. F. E. H. Tay, “Microfluidics and bio-MEMS applications.” Kluwer Academic Publishers, New York, 2002.
    4. D. R. Reyes, D. Iossifidis, P. A. Auroux, Manz, A., “Micro total analysis systems. 1. Introduction, theory, and technology.” Analytical Chemistry, 74, 2623-2636, 2002.
    5. P. A. Auroux, D. Iossifidis, D. R. Reyes, A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications.” Analytical Chemistry, 74, 2637-2652, 2002.
    6. K. Y. Lien, W. Y. Lin, Y. F. Lee, C. H. Wang, H. Y. Lei, G. B. Lee, “Microfluidic systems integrated with a sample pretreatment device for fast nucleic-acid amplification.” Journal of Microelectromechanical Systems, 17, 288-301, 2008.
    7. A. J. de Mello, N. Beard, “Dealing with 'real' samples: sample pre-treatment in microfluidic systems.” Lab on a Chip, 3, 11N-19N, 2003.
    8. P. Gascoyne, J. Satayavivad, M. Ruchirawat, “Microfluidic approaches to malaria detection.” Acta Tropica, 89, 357-369, 2004.
    9. E. W. H. Jager, O. Inganas, I. Lundstrom, “Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation.” Science, 288, 2335-2338, 2000.
    10. K. J. Schwab, R. DeLeon, M. D. Sobsey, “Immunoaffinity concentration and purification of waterborne enteric viruses for detection by reverse transcriptase PCR.” Applied and Environmental Microbiology, 62, 2086-2094, 1996.
    11. P. Vulto, G. Medoro, L. Altomare, G. A. Urban, M. Tartagni, R. Guerrieri, N. Manaresi, “Selective sample recovery of DEP-separated cells and particles by phaseguide-controlled laminar flow.” Journal of Micromechanics and Microengineering, 16, 1847-1853, 2006.
    12. X. L. Zhang, J. M. Cooper, P. B. Monaghan, S. J. Haswell, “Continuous flow separation of particles within an asymmetric microfluidic device.” Lab on a Chip, 6, 561-566, 2006.
    13. C. Iliescu, G. L. Xu, P. L. Ong, K. J. Leck, “Dielectrophoretic separation of biological samples in a 3D filtering chip.” Journal of Micromechanics and Microengineering, 17, S128-S136, 2007.
    14. A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers.” Ieee Journal of Selected Topics in Quantum Electronics, 13, 235-243, 2007.
    15. M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice.” Nature, 426, 421-424, 2003.
    16. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching.” Nature Biotechnology, 23, 83-87, 2005.
    17. S. Choi, J. K. Park, “Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.” Lab on a Chip, 5, 1161-1167, 2005.
    18. J. Voldman, “Electrical forces for microscale cell manipulation.” Annual Review of Biomedical Engineering, 8, 425-454, 2006.
    19. J. W. Choi, C. H. Ahn, S. Bhansali, H. T. Henderson, “A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems.” Sensors and Actuators B-Chemical, 68, 34-39, 2000.
    20. M. Berger, J. Castelino, R. Huang, M. Shah, R. H. Austin, “Design of a microfabricated magnetic cell separator.” Electrophoresis, 22, 3883-3892, 2001.
    21. M. Yamada, K. Kano, Y. Tsuda, J. Kobayashi, M. Yamato, M. Seki, T. Okano, “Microfluidic devices for size-dependent separation of liver cells.” Biomedical Microdevices, 9, 637-645, 2007.
    22. S. Choi, S. Song, C. Choi, J. K. Park, “Continuous blood cell separation by hydrophoretic filtration.” Lab on a Chip, 7, 1532-1538, 2007.
    23. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles.” Optics Letters, 11, 288-290, 1986.
    24. D. G. Grier, “A revolution in optical manipulation.” Nature, 424, 810-816, 2003.
    25. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps.” Biophysical Journal, 77, 2856-2863, 1999.
    26. Y. Liu, G. J. Sonek, M. W. Berns, B. J. Tromberg, “Physiological monitoring of optically trapped cells: Assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry.” Biophysical Journal, 71, 2158-2167, 1996.
    27. P. P. Calmettes, M. W. Berns, “Laser-induced multiphoton processes in living cells.” Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 80, 7197-7199, 1983.
    28. C. F. Chapman, Y. Liu, G. J. Sonek, B. J. Tromberg, “The use of exogenous fluorescent-probes for temperature-measurements in single living cells.” Photochemistry and Photobiology, 62, 416-425, 1995.
    29. Y. J. Kang, D. Q. Li, S. A. Kalams, J. E. Eid, “DC-Dielectrophoretic separation of biological cells by size.” Biomedical Microdevices, 10, 243-249, 2008.
    30. M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems.” Electrophoresis, 23, 2569-2582, 2002.
    31. H. A. Pohl, “Dielectrophoresis.” Cambridge University Press, Cambridge, 1978.
    32. X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Markx, R. Pethig, “Selective dielectrophoretic confinement of bioparticles in potential-energy wells.” Journal of Physics D-Applied Physics, 26, 1278-1285, 1993.
    33. I. Doh, Y. H. Cho, “A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process.” Sensors and Actuators a-Physical, 121, 59-65, 2005.
    34. G. H. Markx, M. S. Talary, R. Pethig, “Separation of viable and nonviable yeast using dielectrophoresis.” Journal of Biotechnology, 32, 29-37, 1994.
    35. M. Urdaneta, E. Smela, “The design of dielectrophoretic flow-through sorters using a figure of merit.” Journal of Micromechanics and Microengineering, 18, 1-8, 2008.
    36. M. Durr, J. Kentsch, T. Muller, T. Schnelle, M. Stelzle, “Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis.” Electrophoresis, 24, 722-731, 2003.
    37. A. B. Fuchs, A. Romani, D. Freida, G. Medoro, M. Abonnenc, L. Altomare, I. Chartier, D. Guergour, C. Villiers, P. N. Marche, M. Tartagni, R. Guerrieri, F. Chatelain, N. Manaresi, “Electronic sorting and recovery of single live cells from microlitre sized samples.” Lab on a Chip, 6, 121-126, 2006.
    38. N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, R. Guerrieri, “A CMOS chip for individual cell manipulation and detection.” Ieee Journal of Solid-State Circuits, 38, 2297-2305, 2003.
    39. P. Y. Chiou, A. T. Ohta, M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images.” Nature, 436, 370-372, 2005.
    40. A. Ashkin, “Acceleration and trapping of particles by radiation pressure.” Physical Review Letters, 24, 156-159, 1970.
    41. P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, M. C. Wu, “Light actuation of liquid by optoelectrowetting.” Sensors and Actuators a-Physical, 104, 222-228, 2003.
    42. R. A. Street, “Hydrogenated Amorphous Silicon.” Cambridge University Press, Cambridge, 1991.
    43. J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers.” Optics Communications, 207, 169-175, 2002.
    44. A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers.” Journal of Microelectromechanical Systems, 16, 491-499, 2007.
    45. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires.” Nature Photonics, 2, 85-89, 2008.
    46. Y. H. Lin, G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting.” Biosensors & Bioelectronics, 24, 572-578, 2008.
    47. Y. H. Lin, G. B. Lee, “An optically induced cell lysis device using dielectrophoresis.” Applied Physics Letters, 94, 2009.
    48. D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si.” Applied Physics Letters, 31, 292-294, 1977.
    49. R. Biswas, B. C. Pan, “Microscopic nature of Staebler-Wronski defect formation in amorphous silicon.” Applied Physics Letters, 72, 371-373, 1998.
    50. T. Su, P. C. Taylor, G. Ganguly, D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon.” Physical Review Letters, 89, 2002.
    51. P. Stradins, “Light-induced degradation in a-Si : H and its relation to defect creation.” Solar Energy Materials and Solar Cells, 78, 349-367, 2003.
    52. A. M. Nardes, A. M. De Andrade, F. J. Fonseca, E. A. T. Dirani, R. Muccillo, E. N. S. Muccillo, “Low-temperature PECVD deposition of highly conductive microcrystalline silicon thin films.” Journal of Materials Science-Materials in Electronics, 14, 407-411, 2003.
    53. H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers-halogen derivatives of polyacetylene, (CH)x.” Journal of the Chemical Society-Chemical Communications, 578-580, 1977.
    54. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. Macdiarmid, “Electrical-conductivity in doped polyacetylene. Physical Review Letters,” 39, 1098-1101, 1977.
    55. A. J. Heeger, “Semiconducting and metallic polymers: The fourth generation of polymeric materials.” Journal of Physical Chemistry B, 105, 8475-8491, 2001.
    56. L. Zuppiroli, M. N. Bussac, S. Paschen, O. Chauvet, L. Forro, “Hopping in disordered conducting polymers.” Physical Review B, 50, 5196-5203, 1994.
    57. A. Moliton, R. C. Hiorns, “Review of electronic and optical properties of semiconducting pi-conjugated polymers: applications in optoelectronics.” Polymer International, 53, 1397-1412, 2004.
    58. C. Moreau, R. Antony, A. Moliton, B. Francois, “Sensitive thermoelectric power and conductivity measurements on implanted polyparaphenylene thin films.” Advanced Materials for Optics and Electronics, 7, 281-293, 1997.
    59. J. J. Eisch, G. R. Husk, “1,4- and 3,4-cycloaddition reactions of 1,1-diphenyl-1,3-butadiene with tetracyanoethylene.” Journal of Organic Chemistry, 31, 589-591, 1966.
    60. W. P. Su, J. R. Schrieffer, A. J. Heeger, “Solitions in polyacetylene.” Physical Review Letters, 42, 1698-1701, 1979.
    61. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene.” Science, 258, 1474-1476, 1992.
    62. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions-diodes, photodiodes, and photovoltaic cells.” Applied Physics Letters, 62, 585-587, 1993.
    63. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, “Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions.” Science, 270, 1789-1791, 1995.
    64. G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends.” Nature Materials, 4, 864-868, 2005.
    65. W. L. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology.” Advanced Functional Materials, 15, 1617-1622, 2005.
    66. M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. L. Brabec, “Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency.” Advanced Materials, 18, 789-794, 2006.
    67. P. Peumans, S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells.” Applied Physics Letters, 79, 126-128, 2001.
    68. H. Hoppe, N. S. Sariciftci, “Organic solar cells: An overview.” Journal of Materials Research, 19, 1924-1945, 2004.
    69. G. Li, V. Shrotriya, Y. Yao, Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene).” Journal of Applied Physics, 98, 2005.
    70. V. Shrotriya, Y. Yao, G. Li, Y. Yang, “Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance.” Applied Physics Letters, 89, 2006.
    71. W. L. Wang, H. B. Wu, C. Y. Yang, C. Luo, Y. Zhang, J. W. Chen, Y. Cao, “High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and 6,6 -phenyl-C-61-butyric acid methyl ester processed with oleic acid surfactant.” Applied Physics Letters, 90, 2007.
    72. C. J. Ko, Y. K. Lin, F. C. Chen, C. W. Chu, “Modified buffer layers for polymer photovoltaic devices.” Applied Physics Letters, 90, 2007.
    73. G. Yu, A. J. Heeger, “Charges separation and photovoltaic conversion in polymer composites with internal donor-acceptor heterojunctions.” Journal of Applied Physics, 78, 4510-4515, 1995.
    74. M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, R. A. J. Janssen, “Efficient methano 70 fullerene/MDMO-PPV bulk heterojunction photovoltaic cells.” Angewandte Chemie-International Edition, 42, 3371-3375, 2003.
    75. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols.” Nature Materials, 6, 497-500, 2007.
    76. M. Lenes, G. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells.” Advanced Materials, 20, 2116-2119, 2008.
    77. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer.” Applied Physics Letters, 75, 1679-1681, 1999.
    78. H. H. Liao, L. M. Chen, Z. Xu, G. Li, Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer.” Applied Physics Letters, 92, 2008.
    79. T. Tiedje, C. R. Wronski, B. Abeles, J. M. Cebulka, “Electron-transport in hydrogenated amorphous-silicon – drift mobility and junction capacitance.” Solar Cells, 2, 301-318, 1980.
    80. F. Padinger, R. S. Rittberger, N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells.” Advanced Functional Materials, 13, 85-88, 2003.
    81. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene.” Applied Physics Letters, 86, 2005.
    82. H. S. Nalwa, “Handbook of Organic Conductive Molecules and Polymers, 4 Volume Set.” Wiley, 1997.
    83. H. Sirringhaus, N. Tessler, R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers.” Science, 280, 1741-1744, 1998.
    84. T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells.” Thin Solid Films, 516, 3138-3142, 2008.
    85. V. Dyakonov, “Mechanisms controlling the efficiency of polymer solar cells.” Applied Physics a-Materials Science & Processing, 79, 21-25, 2004.
    86. F. R. Zhu, B. L. Low, K. R. Zhang, S. J. Chua, “Lithium-fluoride-modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices.” Applied Physics Letters, 79, 1205-1207, 2001.
    87. J. S. Kim, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, “Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance.” Journal of Applied Physics, 84, 6859-6870, 1998.
    88. S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, “Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices.” Applied Physics a-Materials Science & Processing, 68, 447-450, 1999.
    89. J. S. Huang, G. Li, Y. Yang, “A semi-transparent plastic solar cell fabricated by a lamination process.” Advanced Materials, 20, 415-419, 2008.
    90. G. Heywang, F. Jonas, “Poly(alkylenedioxythiophene)s-new, very stable conducting polymers.” Advanced Materials, 4, 116-118, 1992.
    91. J. L. Billeter, R. A. Pelcovits, “Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion.” Physical Review E, 62, 711-717, 2000.
    92. W. Wang, Y. H. Lin, R. S. Guan, T. C. Wen, T. F. Guo, G. B. Lee, “Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles.” Optics Express, 17, 17603-17613, 2009.

    無法下載圖示 校內:2014-09-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE