簡易檢索 / 詳目顯示

研究生: 洪裕萌
Hong, Yu-Meng
論文名稱: 鈷摻雜二氧化錳電極在硫酸鎂電解質中協同增強的高性能超級電容器研究
Synergistic Enhancement of Cobalt-Doped MnO2 Electrode in MgSO4 Electrolyte for High-Performance Supercapacitors
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 83
中文關鍵詞: 鈷摻雜二氧化錳多價陽離子機制分層微花結構
外文關鍵詞: Cobalt-doped manganese oxide, mechanism of multivalent cations, hierarchical micro-flower structure
相關次數: 點閱:51下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這項研究探討了鈷摻雜二氧化錳(Co-doped MnO2)電極在硫酸鎂(MgSO4)電解質中的增強擬電容性能,應用於高性能超級電容器。鈷摻雜二氧化錳電極通過水熱法合成,形成具有層次化微花形態與2 × 2隧道結構。該結構顯著提高了材料的比表面積,達到158 m2 g-1,相比之下,未摻雜鈷的二氧化錳僅為80 m2 g-1。

    電化學性能評估,包括循環伏安法(CV)和恒電流充放電(GCD),在硫酸鎂電解質中表現出顯著成果。鈷摻雜二氧化錳電極在1 A g-1的電流密度下實現了527 F g-1的顯著比電容,這比在硫酸鈉(Na2SO4)電解質中實現的電容高出1.6倍。性能提升歸因於鈷摻雜的協同效應和鎂離子在電解質中有效的電子供應。

    通過X射線繞射(XRD)、X射線光電子能譜(XPS)、比表面積分析(BET)和掃描式電子顯微鏡(SEM)等鑑定技術,進一步確認了鈷摻雜二氧化錳電極的結構和組成優勢。

    研究結論表明,鈷摻雜二氧化錳電極並使用硫酸鎂作為電解質,顯著提升了電極的電化學性能和循環穩定性,彰顯其在新一代超級電容器中的潛力。

    This study investigates the pseudocapacitive enhancement of cobalt-doped manganese oxide (Co-doped MnO2) electrode in magnesium sulfate (MgSO4) electrolyte for high-performance supercapacitors. Co-doped MnO2 electrode was synthesized using a hydrothermal process, resulting in a 2 × 2 tunnel structure with a hierarchical micro-flower morphology.

    This structure significantly increases the material’s specific surface area to 158 m2 g-1, compared to the bare MnO2’s 80 m2 g-1. Electrochemical performance evaluation, including cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD), reveals significant results in a magnesium sulfate electrolyte. The Co-doped MnO2 electrode achieved a notable specific capacitance of 527 F g-1 at a current density of 1 A g-1 in MgSO4 electrolyte.

    This capacitance is 1.6 times higher than that achieved in Na2SO4 electrolyte. The enhanced performance is attributed to the synergistic effects of cobalt doping and the effective electron donation from magnesium ions in the electrolyte. Characterization techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area analysis, and scanning electron microscopy (SEM) further confirm the structural and compositional advantages of the Co-doped MnO2.

    The study concludes that the incorporation of Co into MnO2 and the use of MgSO4 as an electrolyte substantially improve the electrochemical properties and cycling stability of the electrode, underscoring their potential for next-generation supercapacitors.

    摘要 I ABSTRACT Ⅱ ACKNOWLEDGEMENTS Ⅲ TABLE OF CONTENTS Ⅳ LIST OF TABLES Ⅶ LIST OF FIGURES Ⅷ CHAPTER 1 INTRODUCTION 1 1.1 Energy Storage Devices 1 1.2 Types of Supercapacitors 4 1.2.1 Electric Double-Layer Capacitor (EDLC) 4 1.2.2 Pseudocapacitor 4 1.3 Supercapacitor Materials 7 1.4 Types of Electrolytes 9 1.4.1 Liquid Electrolyte 9 1.4.2 Solid Electrolyte 10 1.5 Crystal Structure of Manganese Oxide 11 1.6 Synthesis Methods of Manganese Oxide 14 1.6.1 Electrochemical Deposition 14 1.6.2 Co-precipitation 14 1.6.3 Physical Vapor Deposition 15 1.6.4 Sol-Gel Process 15 1.6.5 Thermal Decomposition 15 1.6.6 Hydrothermal Method 16 1.7 Advantages of Nickel Foam as a Current Collector 17 1.8 The Energy Storage Mechanism of Manganese Oxide Electrode 18 1.9 The Storage Mechanism of Multivalent Cations 19 1.10 Analysis of Capacitor Characteristics 20 1.10.1 Cyclic Voltammetry 20 1.10.2 Chronopotentiometry 21 1.11 Research Motivation 23 CHAPTER 2 EXPERIMENT 24 2.1 Pre-treatment of Substrate 24 2.2 Electrode Preparation 26 2.3 Electrochemical Testing System 28 2.4 Experimental Reagents and Instruments 30 2.4.1 Laboratory Chemicals 30 2.4.2 Laboratory Instruments 30 2.4.3 Analytical Instruments 31 CHAPTER 3. MATERIALS CHARACTERIZATION 32 3.1 X-ray Diffraction Analysis 32 3.2 X-ray Photoelectron Spectroscopy Analysis 34 3.3 Nitrogen Adsorption/Desorption Isotherms 37 3.4 Scanning Electron Microscopy 40 3.5 Transmission Electron Microscopy 42 CHAPTER 4. ELECTROCHEMICAL PERFORMANCE 44 4.1 Cyclic Voltammetry 44 4.2 Contribution of the Capacitor 47 4.3 Galvanostatic Charge-Discharge 51 4.4 Csp Values Evaluated at GCD Current Densities 53 4.5 Capacitance Retention 55 4.6 Coulombic Efficiency 57 4.7 Electrochemical Impedance Spectroscopy 59 CHAPTER 5. CONCLUSION 64 REFERENCES 65

    [1] P. E. Lokhande, U. S. Chavan, A. Pandey, Materials and fabrication methods for electrochemical supercapacitors: overview, Electrochem. Energy Rev. 3 155-186 (2022).
    [2] A. Afif, S. M. Rahman, A. T. Azad, J. Zaini, M. A. Islan, Advanced materials and technologies for hybrid supercapacitors for energy storage - A review, J. Energy Storage 25 100852 (2019).
    [3] Y. Qian, S. Hu, X. Zou, Z. Deng, Y. Xu, Z. Cao, Y. Kang, Y. Deng, Q. Shi, K. Xu, Y. Deng, How electrolyte additives work in Li-ion batteries, Energy Storage Mater. 20 208-215 (2019).
    [4] X. Xie, L. Sheng, R. Xu, X. Gao, L. Yang, Y. Gao, Y. Bai, G. Liu, H. Dong, X. Fan, T. Wang, X. Huang, J. He, In situ mineralized Ca3(PO4)2 inorganic coating modified polyethylene separator for high-performance lithium-ion batteries, J. Electroanal. Chem. 920 116570 (2022).
    [5] Z. Ao, H. Li, Y. Zou, Y. Lao, Y. Wan, P. Li, PEO coupling with NiO/C3N4 heterojunction facilitates lithium salts dissociation and polysulfides conversion for all-solid-state lithium-sulfur battery, Acta Mater. 270 119880 (2024).
    [6] H. Niu, N. Zhang, Y. Lu, Z. Zhang, M. Li, J. Liu, N. Zhang, W. Song, Y. Zhao, Z. Miao, Strategies toward the development of high-energy-density lithium batteries, J. Energy Storage 88 111666 (2024).
    [7] Z. Tao, Z. Zhao, C. Wang, L. Huang, H. Jie, H. Li, Q. Hao, Y. Zhou, K.Y. See, State of charge estimation of lithium Batteries: Review for equivalent circuit model methods, Measurement (2024).
    [8] Y. Yan, B. Wang, C. Wang, C. Xiao, D. Zhao, Adaptive maximum available energy evaluation for lithium battery in hydrogen-electric hybrid unmanned aerial vehicle applications considering dynamic ambient temperature and aging level, Energy Convers. Manage. 314 118685 (2024).
    [9] C. Varlese, A. Ferrara, C. Hametner, P. Hofmann, Experimental validation of a predictive energy management strategy for agricultural fuel cell electric tractors, Int. J. Hydrogen Energy 77 1-14 (2024).
    [10] J. Zuo, N. Y. Steiner, Z. Li, D. Hissel, Health management review for fuel cells: Focus on action phase, Renew. Sustain. Energy Rev. 201 114613 (2024).
    [11] I. Khazaee, A. R. Ghiabi, H. Mohammadiun, M. Mohammadiun, Significance of new geometry of flow channels in proton exchange membrane fuel cell with comparing experimental and numerical methods, Heliyon 10 e32026 (2024).
    [12] S. K. Guchhait, S. Khatana, R. K. Saini, Pranay, A. D. Singh, A. K. Sarma, Recent advances in biomass derived nano-structured carbon materials for low-temperature fuel cell application, Applied Catalysis O: Open 189 206924 (2024).
    [13] J. Zhang, S. Yu, L. Lei, S. Shen, K. Zheng, M. Han, Experimental detection of fuel leakage in solid oxide fuel cells based on voltage signals, Int. J. Hydrogen Energy 77 575-581 (2024).
    [14] J.-P. Chen, Y.-S. Ho, M.-S. Wu, Manganese oxide nanoflakes grown around cobalt oxide nanobundles with improved charge-storage performance for supercapacitors, Ceram. Int. 47 31084-31091 (2021).
    [15] C. Wei, Y. Huang, S. Xue, X. Zhang, X. Chen, J. Yan, W. Yao, One-step hydrothermal synthesis of flaky attached hollow-sphere structure NiCo2S4 for electrochemical capacitor application, Chem. Eng. J. 317 873-881 (2017).
    [16] K. D. Ikkurthi, S. S. Rao, J. W. Ahn, C. D. Sunesh, H. J. Kim, A cabbage leaf like nanostructure of a NiS@ZnS composite on Ni foam with excellent electrochemical performance for supercapacitors, Dalton Trans. 48 578-586 (2019).
    [17] R. D. Kumar, S. Karuppuchamy, Microwave-assisted synthesis of copper tungstate nanopowder for supercapacitor applications, Ceram. Int. 40 12397-12402 (2014).
    [18] S. P. Lim, N. M. Huang, H. N. Lim, Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application, Ceram. Int. 39 6647-6655 (2013).
    [19] M. S. Guney, Y. Tepe, Classification and assessment of energy storage systems, Renew. Sustain. Energy Rev. 75 1187-1197 (2017).
    [20] J. G. Wang, F. Kang, B. Wei, Engineering of MnO2-based nanocomposites for high-performance supercapacitors, Prog. Mater. Sci. 74 51-124 (2015).
    [21] Y. Shao, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. B. Kaner, Design and mechanisms of asymmetric supercapacitors, Chem. Rev. 118 9233-9280 (2018).
    [22] S. Saini, P. Chand, A. Joshi, Biomass derived carbon for supercapacitor applications: Review, J. Energy Storage 39 102646 (2021).
    [23] M. Endo, T. Takeda, Y. J. Kim, K. Koshiba, K. Ishii, High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons, Carbon Science 1 117-128 (2001).
    [24] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci. 7 1597-1614 (2014).
    [25] M. Pershaanaa, Shahid Bashir, S. Ramesh, K. Ramesh, Every bite of supercap: A brief review on construction and enhancement of supercapacitor, J. Energy Storage 50 104599 (2022).
    [26] J. H. Chen, W. Z. Li, D. Z. Wang, S. X. Yang, J. G. Wen, Z. F. Ren, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors, Carbon 40 1193-1197 (2002).
    [27] J. Wang, X. Zhang, Z. Li, Y. Ma, L. Ma, Recent progress of biomass-derived carbon materials for supercapacitors, J. Power Sources 451 227794 (2020).
    [28] D. Khalafallah, X. Quan, C. Ouyang, M. Zhi, Z. Hong, Heteroatoms doped porous carbon derived from waste potato peel for supercapacitors, Renew. Energy 170 60-71 (2021).
    [29] L. Mao, Y. Zhang, Y. Hu, K. H. Ho, Q. Ke, H. Liu, Z. Hu, D. Zhao, J. Wang, Activation of sucrose-derived carbon spheres for high-performance supercapacitor electrodes†, RSC Adv. 5 9307-9313 (2015).
    [30] G. Meng, Q. Yang, X. Wu, P. Wan, Y. Li, X. Lei, X. Sun, J. Liu, Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor, Nano Energy 30 831-839 (2016).
    [31] N. R. Chodankar, S. H. Ji, Y. K. Han, D. H. Kim, Dendritic nanostructured waste copper wires for high-energy alkaline battery, Nano-Micro Lett. 12 (1) (2020).
    [32] J. G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, Interfacial constructing flexible V2O5@polypyrrole core-shell nanowire membrane with superior supercapacitive performance, ACS Appl. Mater. Interfaces 10 18816-18823 (2018).
    [33] M. Huang, F. Li, F. Dong, Y. X. Zhang, L. L. Zhang, MnO2- based nanostructures for high-performance supercapacitor, J. Mater. Chem. A 3 21380-21423 (2015).
    [34] W. Ye, H. Wang, J. Ning, Y. Zhong, Y. Hu, New types of hybrid electrolytes for supercapacitors, J. Energy Chem. 57 219-232 (2021).
    [35] W. Zhang, D. Liu, H. Lin, H. Lu, J. Xu, D. Liu, On the cycling stability of the supercapacitive performance of activated carbon in KOH and H2SO4 electrolytes, Colloids and Surfaces A: Physicochemical and Engineering Aspects 511 294-302 (2016).
    [36] D. Wang, L. Xu, Y. Wang, W. Xu, Rational synthesis of porous carbon nanocages and their potential application in high rate supercapacitors, J. Electroanal. Chem. 815 166-174 (2018).
    [37] H. Wang, M. Yoshio, Effect of water contamination in the organic electrolyte on the performance of activated carbon/graphite capacitors, J. Power Sources 195 389-392 (2010).
    [38] B. Dyatkin, N. C. Osti, A. Gallegos, Y. Zhang, E. Mamontov, P. T. Cummings, J. Wu, Y. Gogotsi, Electrolyte cation length influences electrosorption and dynamics in porous carbon supercapacitors, Electrochim. Acta 283 882-893 (2018).
    [39] C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor, J. AM. CHEM. SOC. 130 2730-2731 (2008).
    [40] N. Meng, X. Zhu, F. Lian, Particles in composite polymer electrolyte for solid-state lithium batteries: A review, Particuology 60 14-36 (2022).
    [41] J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels, Nature 489 133-136 (2012).
    [42] S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112 4406-4417 (2008).
    [43] K. Wickramaarachchi, M. Minakshi, Status on electrodeposited manganese dioxide and biowaste carbon for hybrid capacitors: The case of high-quality oxide composites, mechanisms, and prospects, J. Energy Storage 56 106099 (2022).
    [44] S. M. Jadhav, R. S. Kalubarme, N. Suzuki, C. Terashima, J. Mun, B. B. Kale, S. W. Gosavi, A. Fujishima, Cobalt-doped manganese dioxide hierarchical nanostructures for enhancing pseudocapacitive properties, ACS Omega 6 5717-5729 (2021).
    [45] L. R. Kanyane, O. S. I Fayomi, A. P. I Popoola, P. N Sibisi, Effect of MgO/MnO2 additives on the structural properties of Zinc electroplated mild steel, Procedia Manufacturing 35 265-271 (2019).
    [46] H. Y. Lee, S. W. Kim, H. Y. Lee, Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode, Electrochemical and solid-state letters 4 A19-A22 (2001).
    [47] R. Raghavan, W. Farmer, L. T. Mushongera, K. Ankit, Multiphysics approaches for modeling nanostructural evolution during physical vapor deposition of phase-separating alloy films, 199 110724 (2021).
    [48] S. Ardizzone, G. Fregonara, S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes, Electrochim. Acta 35 263-267 (1990).
    [49] V. Subramanian, H. Zhu, R. Vajtai, P. M. Ajayan, B. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures, J. Phys. Chem. B 109 20207-20214 (2005).
    [50] B. Pandit, E. S. Goda, M. H. A. Elella, A. ur Rehman, S. E. Hong, S. R. Rondiya, P. Barkataki, S. F. Shaikh, A. M. Al-Enizi, S. M. El-Bahy, K. R. Yoon, One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors, J. Energy Chem. 65 116-126 (2022).
    [51] T. Zhou, H. Gao, Y. Hu, W. Huang, F. Yang, W. Sun, X. Yi, Activation stainless steel with electrochemical etching-hydrothermal as an efficient and stable alkaline water oxidation electrode, J. Power Sources 577 233241 (2023).
    [52] D. Muramatsu, A. Magori, S. Tsukada, K. Hoshino, Capacitor properties of 3D hierarchical structured electrodes prepared by one-step electrodeposition of cobalt nanowires on stainless steel fiber sheets, Electrochem Commun. 141 107346 (2022).
    [53] N. A. Salleh, S. Kheawhom, A. A. Mohamad, Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application, Arab. J. Chem. 13 6838-6846 (2020).
    [54] W. Wei, X. Cui, W. Chen, D. G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 1697-1721 (2011).
    [55] C. Xu, F. Kang, B. Li, H. Du, Recent progress on manganese dioxide based supercapacitors, J. Mater. Res. 25 1421-1432 (2010).
    [56] C. Xu, H. Du, B. Li, F. Kang, Y. Zeng, Capacitive behavior and charge storage mechanism of manganese dioxide in aqueous solution containing bivalent cations, J. Electrochem. Soc. 156 A73 (2008).
    [57] C. Xu, C. Wei, B. Li, F. Kang, Z. Guan, Charge storage mechanism of manganese dioxide for capacitor application: Effect of the mild electrolytes containing alkaline and alkaline-earth metal cations, J. Power Sources 196 7854-7859 (2011).
    [58] O. J. Guy, K. A. D. Walker, Graphene functionalization for biosensor applications, Elsevier: Amsterdam The Netherlands 85-141 (2016).
    [59] T. Schoetz, L. W. Gordon, S. Ivanov, A. Bund, D. Mandler, R. J. Messinger, Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems, Electrochim. Acta 412 140072 (2022).
    [60] X. Min, M. Guo, K. Li, J. N. Gu, X. Guo, Y. Xue, J. Liang, S. Hu, J. Jia, T. Sun, Enhancement of toluene removal over α@δ-MnO2 composites prepared via one-pot by modifying the molar ratio of KMnO4 to MnSO4⋅H2O, Appl. Surf. Sci. 568 150972 (2021).
    [61] E. E. Kalu, T. T. Nwoga, V. Srinivasan, J. W. Weidner, Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide, J. Power Sources 92 163-167 (2001).
    [62] K. R. Shrestha, S. Kandula, N. H. Kim, J. H. Lee, A spinel MnCo2O4/NG 2D/2D hybrid nanoarchitectures as advanced electrode material for high performance hybrid supercapacitors, J. Alloys Compd. 771 810-820 (2019).
    [63] H. Liu, Z. Guo, S. Wang, X. Xun, D. Chen, J. Lian, Reduced core-shell structured MnCo2O4@MnO2 nanosheet arrays with oxygen vacancies grown on Ni foam for enhanced-performance supercapacitors, J. Alloys Compd. 846 156504 (2020).
    [64] M.-S. Wu, L.-R. Hong, Cyclic voltammetric formation of hollow porous γ-MnO2 microspheres as stable electrodes for high-performance supercapacitors, J. Energy Storage 75 109721 (2024).
    [65] C. Sangwichien, G. Aranovich, M. Donohue, Density functional theory predictions of adsorption isotherms with hysteresis loops, Colloids Surf. A: Physicochem. Eng. Asp. 206 313-320 (2002).
    [66] M. M. Sundaram, A. Biswal, D. Mitchell, R. Jones, C. Fernandez, Correlation among physical and electrochemical behaviour of nanostructured electrolytic manganese dioxide from leach liquor and synthetic for aqueous asymmetric capacitor, Phys. Chem. Chem. Phys. 18 4711-4720 (2016).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE