簡易檢索 / 詳目顯示

研究生: 簡紹儒
Chien, Shao-Ju
論文名稱: 探討游離脂肪酸對胰臟beta細胞胰島素分泌之影響
Effects of free fatty acid on insulin secretion in pancreatic beta cells
指導教授: 陳韻雯
Chen, Yun-Wen
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 84
中文關鍵詞: 高脂飲食游離脂肪酸血清素受器2C鈣離子恆定beta細胞
外文關鍵詞: high-fat diet, free fatty acids, serotonin receptor 2C, calcium homeostasis, beta cells
相關次數: 點閱:203下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在第二型糖尿病的患者與肥胖的人群中,好發高血脂症的機率較高以及血液會有較高的血清素濃度。根據研究指出,血液中過多的游離脂肪酸會導致胰島素抗性的增加並損壞胰臟beta細胞之功能。近年的文獻顯示,在db/db肥胖小鼠的胰臟beta細胞,血清素受器2C的表現量是上升的並且影響了胰島素的分泌。然而,游離脂肪酸改變了血清素受器2C並進而影響胰島素分泌的詳細機制還尚未明確。因此本篇的主要目的為探討游離脂肪酸對於血清素受器2C的影響以及血清素受器2C的訊息傳導在胰臟beta細胞胰島素分泌時所扮演的角色。在本研究中,我們首先利用20週的高脂飲食餵食小鼠,在屆滿20週時測量血液生化值,發現高脂飲食組除了體重上升外,更有葡萄糖耐受不良及胰島素敏感性下降的情形,這確定了我們成功地誘發小鼠產生肥胖及胰島素阻抗。接著我們將小鼠的胰臟做切片並染色,發現血清素受器2C的表現量上升。為了更進一步探討其詳細的機制,我們將老鼠beta細胞株MIN6處理棕櫚酸後,發現胰島素的分泌上升了,血清素受器2C的表現量也是上升的。Gαq/11蛋白為血清素受器2C訊息傳導之下游,其表現量也經處理棕櫚酸後而上升。此外,鈣離子的恆定對於胰島素釋放也相當重要,因此我們利用單細胞離子影像分析系統,發現處理棕櫚酸後,細胞內鈣離子明顯上升。為了確定棕櫚酸是透過血清素受器2C影響鈣離子的恆定,因此我們加入血清素受器2C拮抗劑SB242084,發現細胞內鈣離子下降了。綜合上述的結果,我們認為棕櫚酸使胰島素分泌增加是透過增加血清素受器2C的表現及活化其下游鈣離子訊息傳遞路徑所導致。

    Patients with type 2 diabetes mellitus (T2DM) and obesity usually have high plasma levels of serotonin (5-hydroxytryptamine; 5-HT) and hyperlipidemia. It has been reported that excess free fatty acids (FFAs) may increase the insulin resistance and lead to pancreatic beta cell dysfunctions. Recent study showed that increased expression of serotonin receptor 2C (5-HT2CR) affected insulin secretion in pancreatic islets of db/db mice. However, the underlying mechanism(s) how FFAs alter insulin secretion via 5-HT2CR signaling are not fully understood. In this study, we aimed to investigate the effects of FFAs on 5-HT2CR and dissect the role of 5-HT2CR signaling on insulin secretion in pancreatic beta cells. In our study, we fed C57BL/6 mice with high-fat diet (HFD) or standard chow for 20 weeks. We found that mice fed with HFD showed obesity, glucose intolerance and lower insulin sensitivity compare with mice fed with standard chow, suggesting that our mice were obesity and became insulin resistance. Furthermore, we found that 5-HT2cR expression was increased in pancreatic islets of mice fed with HFD. Additionally, we found that palmitic acid (PA) treatment increased the glucose-stimulated insulin secretion (GSIS) and the expression of 5-HT2CR in MIN6 beta cells. The expression of Gαq/11 also increased in MIN6 beta cells incubated with PA. Calcium signaling is essential for insulin release. We found that PA increased ER calcium release and SOCE activity. To investigate whether PA affect ER calcium release and SOCE through 5-HT2cR signaling pathway, we used 5-HT2CR antagonist SB242084 to treat MIN6 beta cells, and found that ER calcium release and SOCE were decreased. Taken together, our results suggested that PA increased insulin secretion through up-regulated 5-HT2CR expression and activated downstream calcium signaling pathway.

    中文摘要……………………………………...……………………..….....…I Abstract……………………………………………………….……..………IV Abbreviation…………………………………………………....….......…..VIII List of figures………………………………………………………..….…....X Introduction 1. Diabetes mellitus 1-1 Epidemiology.............................................................................2 1-2 Category.....................................................................................3 1-3 Glucose-stimulated insulin secretion.........................................4 2. Hyperlipidemia 2-1 Hyperlipidemia and diabetes mellitus.......................................6 2-2 Type of free fatty acids..............................................................7 2-3 Free fatty acids and diabetes mellitus........................................9 3. Serotonin 3-1 Cellular functions..................................................................................11 3-2 Serotonin and glucose homeostasis.......................................................13 4. Serotonin receptor 2C 4-1 Structure................................................................................................15 4-2 Cellular functions..................................................................................16 4-3 Serotonin receptor 2C and diabetes mellitus.........................................16 4-4 Serotonin receptor 2C signaling............................................................17 5. Calcium 5-1 Calcium homeostasis and Glucose-stimulated insulin secretion.....….19 5-2 Store-operated Ca2+ entry (SOCE)........................................................20 6. Aim of this study....................................................................................21 Materials and methods 1. Materials..................................................................................................23 2. Recipes....................................................................................................25 3. Methods 3-1Animal.................................................................................................29 3-2 Cell culture.........................................................................................29 3-3 MTT assay..........................................................................................30 3-4 Immunoblotting..................................................................................30 3-5 Immunofluorescence..........................................................................31 3-6 Glucose-stimulated insulin secretion assay........................................31 3-7 Glucose tolerance test........................................................................32 3-8 Insulin tolerance test..........................................................................32 3-9 Fasting glucose level test...................................................................32 3-10 Fasting insulin level test...................................................................33 3-11 HOMA IR and HOMA beta index...................................................33 3-12 Quantitative real-time PCR (qPCR) ................................................33 3-13 Single cell calcium measurement.....................................................34 3-14 Oil red O stain............................................ ......... ......... ......... .......35 3-15 Statistical analysis............................................................................35 Results 1. The energy intake and body weight are increased in high-fat diet treated mice…………………………………………………………….……..……..37 2. Liver, brown fat, epididymal fat wet weight are increased in high-fat diet treated mice…………………………………………………………….…....37 3. Mice fed with HFD impair glucose tolerance and insulin sensitivity…….38 4. Mice fed with HFD show insulin resistance without impair the function of beta cells………………………………………………………………......…38 5. 5-HT2cR expression is increased in pancreatic islets of high-fat diet-induced mice……………………………………………...….………………….……38 6. 5-HT2cR mRNA expression is increased in pancreatic islets of high-fat diet-induced mice……………………………………………………………39 7. FFAs (PA, OA and SA) do not affect cell viability of MIN6 cells in 24 hours treatment……………………………………………...……………….39 8. Effects of PA on Glucose-stimulated insulin secretion (GSIS) in MIN6 beta cells…………………………...…………………………………...…………40 9. PA increases cell surface 5-HT2cR expression in MIN6 beta cells….……41 10. PA increases 5-HT2cR protein expression in MIN6 beta cells……..........41 11. PA increases Gαq/11 protein expression in MIN6 beta cells…......…..…..41 12. PA increases ER calcium and SOCE activity in MIN6 beta cells……….42 13. PA increases ER calcium and SOCE activity via 5-HT2cR signaling pathway in MIN6 beta cells……………………………………………….…42 Conclusion and Discussion…………………………………………….……43 References…………………………………………….……………………..48 Tables………………………………………………………………………..62 Figures…………………………………………………………………….....64

    Abbate, S. L., & Brunzell, J. D. (1990). Pathophysiology of hyperlipidemia indiabetes mellitus. J Cardiovasc Pharmacol, 16 Suppl 9, S1-7.

    Akrouh, A., Halcomb, S. E., Nichols, C. G., & Sala-Rabanal, M. (2009). Molecular biology of K(ATP) channels and implications for health and disease. IUBMB Life, 61(10), 971-978.

    Alex, K. D., Yavanian, G. J., McFarlane, H. G., Pluto, C. P., & Pehek, E. A. (2005). Modulation of dopamine release by striatal 5-HT2C receptors. Synapse, 55(4), 242-251.

    Bennet, H., Mollet, I. G., Balhuizen, A., Medina, A., Nagorny, C., Bagge, (2016). Serotonin (5-HT) receptor 2b activation augments glucose-stimulated insulin secretion in human and mouse islets of Langerhans. Diabetologia, 59(4), 744-754.

    Berger, M., Gray, J. A., & Roth, B. L. (2009). The expanded biology of serotonin. Annu Rev Med, 60, 355-366.

    Boden, G. (1999). Free fatty acids, insulin resistance, and type 2 diabetes mellitus. Proc Assoc Am Physicians, 111(3), 241-248.

    Cade, W. T. (2008). Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther, 88(11), 1322-1335.

    Chen, Y. F., Chen, Y. T., Chiu, W. T., & Shen, M. R. (2013). Remodeling of calcium signaling in tumor progression. J Biomed Sci, 20, 23.

    Coelho, W. S., Da Silva, D., Marinho-Carvalho, M. M., & Sola-Penna, M. (2012). Serotonin modulates hepatic 6-phosphofructo-1-kinase in an insulin synergistic manner. Int J Biochem Cell Biol, 44(1), 150-157.

    Costagliola, C., Parmeggiani, F., Semeraro, F., & Sebastiani, A. (2008). Selective serotonin reuptake inhibitors: a review of its effects on intraocular pressure. Curr Neuropharmacol, 6(4), 293-310.

    Davies, J. L., Kawaguchi, Y., Bennett, S. T., Copeman, J. B., Cordell, H. J., Pritchard, L. E., . . . et al. (1994). A genome-wide search for human type 1 diabetes susceptibility genes. Nature, 371(6493), 130-136.

    Deshpande, A. D., Harris-Hayes, M., & Schootman, M. (2008). Epidemiology of diabetes and diabetes-related complications. Phys Ther, 88(11), 1254-1264.

    Draznin, B. (1988). Intracellular calcium, insulin secretion, and action. Am J Med, 85(5a), 44-58.

    Dresner, A., Laurent, D., Marcucci, M., Griffin, M. E., Dufour, S., Cline, G. W., Shulman, G. I. (1999). Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest, 103(2), 253-259.

    du Bois, T. M., Deng, C., Bell, W., & Huang, X. F. (2006). Fatty acids differentially affect serotonin receptor and transporter binding in the rat brain. Neuroscience, 139(4), 1397-1403.

    Eisinger, K., Liebisch, G., Schmitz, G., Aslanidis, C., Krautbauer, S., & Buechler, C. (2014). Lipidomic analysis of serum from high fat diet induced obese mice. Int J Mol Sci, 15(2), 2991-3002.

    El-Merahbi, R., Loffler, M., Mayer, A., & Sumara, G. (2015). The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett, 589(15), 1728-1734.

    Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. Physiol Rev, 93(1), 137-188.
    Ford, E. S., Williamson, D. F., & Liu, S. (1997). Weight change and diabetes incidence: findings from a national cohort of US adults. Am J Epidemiol, 146(3), 214-222.

    Funaki, M. (2009). Saturated fatty acids and insulin resistance. J Med Invest, 56(3-4), 88-92.

    Gavarini, S., Becamel, C., Altier, C., Lory, P., Poncet, J., Wijnholds, J., Marin, P. (2006). Opposite effects of PSD-95 and MPP3 PDZ proteins on serotonin 5-hydroxytryptamine 2C receptor desensitization and membrane stability. Mol Biol Cell, 17(11), 4619-4631.

    Gerich, J. E., (2002). Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes, 51 Suppl 1, S117-121.

    Gilon, P., Chae, H. Y., Rutter, G. A., & Ravier, M. A. (2014). Calcium signaling in pancreatic beta-cells in health and in Type 2 diabetes. Cell Calcium, 56(5), 340-361.

    Golay, A., & Ybarra, J. (2005). Link between obesity and type 2 diabetes. Best Pract Res Clin Endocrinol Metab, 19(4), 649-663.
    Hara, K., Hirowatari, Y., & Takahashi, H. (2011). Serotonin levels in platelet-poor plasma and whole blood in people with type 2 diabetes with chronic kidney disease. Diabetes Res Clin Pract, 94(2), 167-171.

    Heisler, L. K., Zhou, L., Bajwa, P., Hsu, J., & Tecott, L. H. (2007). Serotonin 5-HT(2C) receptors regulate anxiety-like behavior. Genes Brain Behav, 6(5), 491-496.

    Hirabara, S. M., Curi, R., & Maechler, P. (2010). Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. J Cell Physiol, 222(1), 187-194. doi:10.1002/jcp.21936

    Hoeks, J., Wilde, J., Hulshof, M. F., Berg, S. A., Schaart, G., Dijk, K. W., . . . Mariman, E. C. (2011). High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance. PLoS One, 6(11), e27274.

    Jensen, C. B., Storgaard, H., Holst, J. J., Dela, F., Madsbad, S., & Vaag, A. A. (2003). Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men. J Clin Endocrinol Metab, 88(6), 2775-2783.
    Koyama, K., Chen, G., Lee, Y., & Unger, R. H. (1997). Tissue triglycerides, insulin resistance, and insulin production: implications for hyperinsulinemia of obesity. Am J Physiol, 273(4 Pt 1), E708-713.

    Kring, S. I., Werge, T., Holst, C., Toubro, S., Astrup, A., Hansen, T., Sorensen, T. I. (2009). Polymorphisms of serotonin receptor 2A and 2C genes and COMT in relation to obesity and type 2 diabetes. PLoS One, 4(8), e6696.

    Kristinsson, H., Smith, D. M., Bergsten, P., & Sargsyan, E. (2013). FFAR1 is involved in both the acute and chronic effects of palmitate on insulin secretion. Endocrinology, 154(11), 4078-4088.

    Kuipers, R. S., de Graaf, D. J., Luxwolda, M. F., Muskiet, M. H., Dijck-Brouwer, (2011). Saturated fat, carbohydrates and cardiovascular disease. Neth J Med, 69(9), 372-378.

    Kwon, B., Lee, H. K., & Querfurth, H. W. (2014). Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. Biochim Biophys Acta, 1843(7), 1402-1413.

    Lauffer, L., Glas, E., Gudermann, T., & Breit, A. (2016). Endogenous 5-HT2C Receptors Phosphorylate the cAMP Response Element Binding Protein via Protein Kinase C-Promoted Activation of Extracellular-Regulated Kinases-1/2 in Hypothalamic mHypoA-2/10 Cells. J Pharmacol Exp Ther, 358(1), 39-49.

    Leech, C. A., Kopp, R. F., Nelson, H. A., Nandi, J., & Roe, M. W. (2017). Stromal Interaction Molecule 1 (STIM1) Regulates ATP-sensitive Potassium (KATP) and Store-operated Ca2+ Channels in MIN6 beta-Cells. J Biol Chem, 292(6), 2266-2277.

    Li, X., Guo, K., Li, T., Ma, S., An, S., Wang, S. (2016). 5-HT 2 receptor mediates high-fat diet-induced hepatic steatosis and very low density lipoprotein overproduction in rats. Obes Res Clin Pract.

    Lupi, R., Del Guerra, S., Marselli, L., Bugliani, M., Boggi, U., Mosca, F., Del Prato, S. (2004). Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPARgamma2 in the modulation of insulin secretion. Am J Physiol Endocrinol Metab, 286(4), E560-567.

    Marston, O. J., Garfield, A. S., & Heisler, L. K. (2011). Role of central serotonin and melanocortin systems in the control of energy balance. Eur J Pharmacol, 660(1), 70-79.

    McCorvy, J. D., & Roth, B. L. (2015). Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther, 150, 129-142.

    Millan, M. J., Marin, P., Bockaert, J., & Mannoury la Cour, C. (2008). Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol Sci, 29(9), 454-464.

    Mitrakou, A., Vuorinen-Markkola, H., Raptis, G., Toft, I., Mokan, M., Strumph, P., (1992). Simultaneous assessment of insulin secretion and insulin sensitivity using a hyperglycemia clamp. J Clin Endocrinol Metab, 75(2), 379-382.

    Moloney, F., Yeow, T. P., Mullen, A., Nolan, J. J., & Roche, H. M. (2004). Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. Am J Clin Nutr, 80(4), 887-895.

    Noctor, E., & Dunne, F. P. (2015). Type 2 diabetes after gestational diabetes: The influence of changing diagnostic criteria. World J Diabetes, 6(2), 234-244.

    Nonogaki, K., Nozue, K., & Oka, Y. (2006). Hyperphagia alters expression of hypothalamic 5-HT2C and 5-HT1B receptor genes and plasma des-acyl ghrelin levels in Ay mice. Endocrinology, 147(12), 5893-5900.

    O'Brien, T., Nguyen, T. T., & Zimmerman, B. R. (1998). Hyperlipidemia and Diabetes Mellitus. Mayo Clinic Proceedings, 73(10), 969-976.

    Ohara-Imaizumi, M., Kim, H., Yoshida, M., Fujiwara, T., Aoyagi, K., Toyofuku, Y., Nagamatsu, S. (2013). Serotonin regulates glucose- stimulated insulin secretion from pancreatic beta cells during pregnancy. Proc Natl Acad Sci U S A, 110(48), 19420-19425.

    Paulmann, N., Grohmann, M., Voigt, J. P., Bert, B., Vowinckel, J., Bader, M., Walther, D. J. (2009). Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol, 7(10), e1000229.

    Prakriya, M., & Lewis, R. S. (2015). Store-Operated Calcium Channels. Physiol Rev, 95(4), 1383-1436.

    Putney, J. W., Jr. (1986). A model for receptor-regulated calcium entry. Cell Calcium, 7(1), 1-12.

    Richmond, J. E., Codignola, A., Cooke, I. M., & Sher, E. (1996). Calcium- and barium-dependent exocytosis from the rat insulinoma cell line RINm5F assayed using membrane capacitance measurements and serotonin release. Pflugers Arch, 432(2), 258-269.

    Roskoski, R., Jr. (2012). ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res, 66(2), 105-143.

    Ruiz de Azua, I., Gautam, D., Guettier, J. M., & Wess, J. (2011). Novel insights into the function of beta-cell M3 muscarinic acetylcholine receptors: therapeutic implications. Trends Endocrinol Metab, 22(2), 74-80.

    Rustan, A. C., & Drevon, C. A. (2005). Fatty Acids: Structures and Properties.

    Sabourin, J., Le Gal, L., Saurwein, L., Haefliger, J. A., Raddatz, E., & Allagnat, F. (2015). Store-operated Ca2+ Entry Mediated by Orai1 and TRPC1 Participates to Insulin Secretion in Rat beta-Cells. J Biol Chem, 290(51), 30530-30539.
    Sassmann, A., Gier, B., Grone, H. J., Drews, G., Offermanns, S., & Wettschureck, N. (2010). The Gq/G11-mediated signaling pathway is critical for autocrine potentiation of insulin secretion in mice. J Clin Invest, 120(6), 2184-2193.

    Schellekens, H., Clarke, G., Jeffery, I. B., Dinan, T. G., & Cryan, J. F. (2012). Dynamic 5-HT2C receptor editing in a mouse model of obesity. PLoS One, 7(3), e32266.

    Schreyer, S. A., Wilson, D. L., & LeBoeuf, R. C. (1998). C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis. Atherosclerosis, 136(1), 17-24.

    Stein, D. T., Stevenson, B. E., Chester, M. W., Basit, M., Daniels, M. B., Turley, S. D., & McGarry, J. D. (1997). The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest, 100(2), 398-403.

    Tecott, L. H., Sun, L. M., Akana, S. F., Strack, A. M., Lowenstein, D. H., Dallman, M. F., & Julius, D. (1995). Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature, 374(6522), 542-546.

    Toledo, K., Aranda, M., Asenjo, S., Saez, K., & Bustos, P. (2014). Unsaturated fatty acids and insulin resistance in childhood obesity. J Pediatr Endocrinol Metab, 27(5-6), 503-510.

    Vickers, S. P., Clifton, P. G., Dourish, C. T., & Tecott, L. H. (1999). Reduced satiating effect of d-fenfluramine in serotonin 5-HT(2C) receptor mutant mice. Psychopharmacology (Berl), 143(3), 309-314.

    Wang, L., Folsom, A. R., Zheng, Z. J., Pankow, J. S., & Eckfeldt, J. H. (2003). Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr, 78(1), 91-98.

    Weber, S., Volynets, V., Kanuri, G., Bergheim, I., & Bischoff, S. C. (2009). Treatment with the 5-HT3 antagonist tropisetron modulates glucose-induced obesity in mice. Int J Obes (Lond), 33(12), 1339-1347.

    Werry, T. D., Loiacono, R., Sexton, P. M., & Christopoulos, A. (2008). RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol Ther, 119(1), 7-23.

    Wilson, C. H., Ali, E. S., Scrimgeour, N., Martin, A. M., Hua, J., Tallis, G. A., . . . Barritt, G. J. (2015). Steatosis inhibits liver cell store-operated Ca2+ entry and reduces ER Ca2+ through a protein kinase C-dependent mechanism. Biochem J, 466(2), 379-390.

    Wyne, K. L. (2003). Free fatty acids and type 2 diabetes mellitus. Am J Med, 115 Suppl 8A, 29s-36s.

    Yang, M., Wei, D., Mo, C., Zhang, J., Wang, X., Han, X., . . . Xiao, H. (2013). Saturated fatty acid palmitate-induced insulin resistance is accompanied with myotube loss and the impaired expression of health benefit myokine genes in C2C12 myotubes.

    Zhang, Q., Zhu, Y., Zhou, W., Gao, L., Yuan, L., & Han, X. (2013). Serotonin receptor 2C and insulin secretion. PLoS One, 8(1), e54250.

    Zhou, L., Sutton, G. M., Rochford, J. J., Semple, R. K., (2007). Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab, 6(5), 398-405.

    無法下載圖示 校內:2022-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE