簡易檢索 / 詳目顯示

研究生: 李冠文
Li, Kwan-Wen
論文名稱: 建構符合機電包商施工需求之 3D 繪圖元件模型之研究
The Study of Developing 3D Drawing Objects Model According to the Needs of the MEP Sub-Contractors
指導教授: 馮重偉
Feng, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 132
中文關鍵詞: 施工邏輯施工屬性BIM機電元件
外文關鍵詞: Construction logic, Construction attributes, BIM, MEP component
相關次數: 點閱:72下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人們對生活品質的要求逐漸升高,不斷改善建築環境的舒適度與便利性,使得現代建築之機電系統設計漸趨複雜化。機電系統複雜之專案如醫院、旅館、商業辦公大樓、生物科技廠、電子晶圓廠等,其機電工程費用可達專案總成本百分之五十以上,對專案品質、時間、成本有一定的影響力。
    然而,機電系統元件多依附於建築結構與裝修材料上,使得機電作業多不能獨立進行,需配合土建包商施工流程。而機電系統種類繁多,專業知識較不易為其他工種所了解,容易產生界面問題,需透過不斷重複的溝通與協調來解決工程問題。
    由於界面衝突點多,使得機電系統設計常有不預期之管線衝突,需多次檢討、修改與估算圖面,大幅增加機電內業人員的工作量,稍不謹慎則易產生人為錯誤。此外,機電作業施工過程當中常有施工空間干擾、施工順序紊亂之情形,管路配裝與設備安裝順序無統一準則可供參考,常需拆除重做工項,因而導致專案成本增加、工期壓縮與品質降低。
    隨著BIM(Building Information Modeling)技術發展漸趨成熟,相關電腦輔助工具已被研究學者應用於專案實例,並獲得可觀的效益。本研究透過訪談、觀察、施工文件整理,以一棟新建醫院第八層機電系統為案例,對照相關文獻資料,建構機電元件施工邏輯與屬性架構,將機電包商施工所需資訊內嵌於3D 機電模型繪圖元件屬性當中,使元件資訊得以被包商擷取並應用於數量計算、採購、物料分配、施工排序、系統測試等基本施工作業需求。

    MEP is an acronym for “Mechanical, Electrical, and Plumbing systems”, with increases in the functionality and complexity of buildings, the MEP scope now includes fire protection, controls, process piping, and telephone/datacom systems. In recent years, the cost of MEP systems can now more than 50 percent of total project cost, having significant impact on project performance.
    Naturally, MEP components must fit within the constraints of architecture and structure, thus the MEP construction activity are highly associated with architecture and structure procedure. However, the knowledge of MEP systems is very specialized, difficult for one discipline to know the requirements of the other trades. In order to across the gap of lacking knowledge and understanding of multiple disciplines involved, MEP subcontractors need a lot of coordination, but usually the coordination is not budgeted in the construction cost and the coordination process is slow and expensive.
    During the design and construction phases, there are many invisible conflicts and interference exists between MEP systems and various trade works. It is difficult for human manually find out all the potential problems concealed within a highly complex building systems. Therefore, some researchers and industry professionals adopt computer tools such as BIM/VDC tools to help MEP design and coordination, and successfully apply BIM/VDC tools on real project, come up with remarkable benefit.
    This research is trying to develop a BIM 3D Model according to MEP subcontractor’s need. We interview MEP expert to acquire the specialized knowledge, observe their coordination process to find out the frequent problem area, analyze construction document to define the attributes of MEP components then review literature to quickly understand MEP practice.
    After knowing the needs of MEP subcontractors, we create a 3D BIM Model which contain the information required by MEP subcontractors. This Model can export information for quantity estimating, procurement, material allocation, construction priority analysis and MEP system testing, also help subcontractor to improve their productivity, provide a better visual coordination platform for MEP Professionals.

    摘要.......................................................................................................................................I Abstract.............................................................................................................................. II 誌謝....................................................................................................................................IV 目錄......................................................................................................................................V 圖目錄................................................................................................................................IX 表目錄..............................................................................................................................XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍 4 1.4 研究方法、步驟與流程 6 1.5 論文內容與架構 9 第二章 研究問題陳述與文獻回顧 10 2.1 研究問題陳述 10 2.2 文獻回顧 13 2.2.1 機電協調作業現況 13 2.2.2 機電協調作業所需知識 17 2.2.3 機電管路衝突與干擾 22 2.2.4 機電系統施工邏輯與順序 24 2.2.5 BIM/VDC電腦工具輔助機電協調作業 29 2.3 小結 33 第三章 機電系統架構與施工屬性分析 34 3.1 機電系統介紹 34 3.2 機電元件層級 37 3.3 機電元件施工屬性 38 3.3.1 管件(Pipe) 39 3.3.2 線(Wire) 40 3.3.3 另件(Fitting) 41 3.3.4 支撐(Support) 42 3.3.5 設備(Fixture/Equipment) 42 3.3.6 盤體(Panelboard) 43 第四章 機電系統施工邏輯與順序 45 4.1 機電管路施作的順序性(MEP System Priority) 45 4.1.1 水平管路 47 4.1.2 垂直管路 48 4.2 機電與結構作業之順序性 48 4.3 機電與建築裝修作業之順序性 50 4.3.1 物理邏輯關係(Physical Logic Relationship) 51 4.3.2 施工邏輯關係(Construction Logic Relationship) 52 4.4 施工機具的使用順序 54 第五章 機電系統3D模型建構與案例分析 56 5.1 案例分析與模擬 – 成功大學第二新建醫院 56 5.1.1 案例背景 56 5.1.2 案例第八層機電系統模型 57 5.1.3 圖說結合採購清單 57 5.1.4 元件數量表輸出 58 5.1.5 系統測試迴路查詢 64 5.2 計價數量差異比較與分析 65 5.2.1 照明系統E-25電導管數量比較 65 5.2.2 排水系統管路數量比較 69 5.2.2.1 SP 50mmø 排水管差異分析 70 5.2.2.2 LSP 100mmø 排水管差異分析 71 5.2.3 給水系統不鏽鋼管數量比較 73 5.2.3.1 FW 15mmø給水管差異分析 74 5.2.3.2 FW 25mmø 給水管差異分析 76 5.2.3.3 FW 40mmø 給水管差異分析 77 5.2.3.4 FW 50mmø 給水管差異分析 78 5.3 日報表差異比較與分析 79 5.4 管路實體衝突檢查 80 5.5 機電管路元件施工排序模擬 83 5.5.1 8F水平管路施工排序分析 85 5.5.2 8F垂直立管施工排序分析 86 5.5.3 水平管路與輕隔間作業順序分析 87 5.5.4 案例之管路配裝作業順序關係圖 88 5.6 小結 89 第六章 結論與建議 90 6.1 結論 90 6.2 未來研究方向與建議 90 參考文獻 93 附錄A Revit MEP 2009簡介 96 A.1 機電系統3D模型建構工具 – Revit MEP 2009 96 A.1.1 Revit MEP 2009簡介 96 A.1.2 Revit MEP使用界面 97 A.1.3 建築背景繪製 104 A.1.4 給排水系統模擬 106 A.1.5 照明系統模擬 107 A.1.6 快速產生剖面 109 A.1.7 系統管路衝突檢查 109 A.1.8 外部資料庫聯結 111 A.2 研究相關表格 112 自述 132

    英文部分
    [1] Baker, G. E., Miller R., and Miller M. R., Miller's guide to home plumbing., McGraw-Hill, New York, (2005).
    [2] Echeverry, D., Ibbs, C. W., and Kim, S., “Sequencing Knowledge for Construction Scheduling”, Journal of Construction Engineering and Management, 117(1), 118-130, (1991).
    [3] Horman, M. J., Orosz M. P., and Riley, D. R., “Sequence Planning for Electrical Construction”, Journal of Construction Engineering and Management, 132(4), 363-372, (2006).
    [4] Joyce, M., Residential construction academy :plumbing., Delmar Learning, Clifton Park, NY, (2005).
    [5] Korman, T. and Tatum, C., “Development of a Knowledge-Based System to Improve Mechanical, Electrical, and Plumbing Coordination”, CIFE Technical Report, No129, Stanford University, Stanford, CA, (2001).
    [6] Korman, T. M., Fischer, M. A., and Tatum, C. B., “Knowledge and Reasoning for MEP Coordination”, Journal of Construction Engineering and Management, 129(6), 627-634, (2003).
    [7] Korman, T. M. and Tatum C. B., “Prototype Tool for Mechanical, Electrical, and Plumbing Coordination”, Journal of Computing in Civil Engineering, 20(1), 38-48, (2006).
    [8] Korman, T. M., Lonny, S., and Elbert, S., “Using Building Information Modeling to Improve the Mechanical, Electrical, and Plumbing Coordination Process for Buildings”, Proceedings of the AEI conference, ASCE, (2008).
    [9] Khanzode, A., Fisher, M., and Reed, “BENEFITS AND LESSONS LEARNED OF IMPLEMENTING BUILDING VIRTUAL DESIGN AND CONSTRUCTION (VDC) TECHNOLOGIES FOR COORDINATION OF MECHANICAL, ELECTRICAL, AND PLUMBING (MEP) SYSTEMS ON A LARGE HEALTHCARE PROJECT”, ITcon, 13, 324-342, (2008).
    [10] Miller, R., Miller M. R., and Baker G. E., Miller's guide to home wiring.,: McGraw-Hill, New York, (2005).
    [11] Mikati, S., Roller, T. G., Tommelein, I. D., Khanzode, A., “Priority Conversations: A Case Study on Priority Walls”, Proceedings of IGLC-15, Michigan, USA, July, (2007).
    [12] McDowall and Robert, Fundamentals of HVAC systems :SI edition., American Society of Heating: Refrigerating and Air-Conditioning Engineers eLearning., Atlanta, (2007).
    [13] Stein, B., Building technology :mechanical and electrical systems. 2nd ed., J. Wiley, New York, (1997).
    [14] Staub, S., and Fischer, M., “Industrial Case Study of Electronic Design, Cost, and Schedule Integration”, CIFE Working Paper, No122, Stanford University, Stanford, CA, (1998).
    [15] Steffy, G., Architectural lighting design., John Wiley, New York, (2002).
    [16] Sorge, H.W., Residential wiring :an introductory approach. 2nd ed., Thomson Delmar Learning, Clifton Park, NY, (2005).
    [17] Staub-French, S. and Khanzode A., “3D and 4D modeling for design and construction coordination: issues and lessons learned”, ITcon, 12, 381-407, (2007).
    [18] Smith, L. and Joyce M.A., Plumbing technology :design and installations., Thomson/Delmar Learning, Australia, (2008).
    [19] Tatum, C.B. and Thomas, K., “Coordinating Building Systems: Process and Knowledge”, Journal of Architectural Engineering, 6(4), 116-121, (2000).
    [20] Tao, Y. W. K., and Janis R.R., Mechanical and Electrical Systems in Buildings., Prentice Hall, Columbus, (2001).
    [21] Trost, J. and Choudhury I., Design of mechanical and electrical systems in buildings., Pearson/Prentice Hall, Upper Saddle River, (2004).
    [22] Tatum C. B. and Korman T., “MEP Coordination in Building and Industrial Projects”, CIFE Working Paper, No54, Stanford University, Stanford, CA, (2006).
    中文部分
    [1] 成大第二新建醫院,「給排水施工計畫書」,2008。
    [2] 李如貴,「公寓大廈水電消防維護管理實務」,永然文化,2004。
    [3] 郭斯傑,「機電設備之變更設計對建築工程總完工期程之分析與影響 (1/2)」,行政院國科會專題研究計畫期中報告 (NSC-2211-E-002-089),2003。
    [4] 郭斯傑,「機電設備之變更設計對建築工程總完工期程之分析與影響 (2/2)」,行政院國科會專題研究計畫期中報告 (NSC-2211-E-002-080),2004。
    [5] 陳天來,「水電工程施工與監造實務」,詹氏,1996。
    [6] 陳志泰,「水電工程圖面估算實務」,詹氏,1996。
    [7] 詹慕祖,「機電工程變更設計對工期的影響」,國立臺灣大學土木工程研究所,碩士論文,2000。
    [8] 戴期甦、陳曉晴、郭斯傑,「建築工程機電系統施工界面整合之探討」,建築學報,2007。

    下載圖示 校內:2010-08-21公開
    校外:2010-08-21公開
    QR CODE