| 研究生: |
洪萱祐 Hung, Hsuan-Yu |
|---|---|
| 論文名稱: |
使用動機因素、知覺價值與品牌偏好關係之研究-以手機品牌apps為例 Usage Motivation, Perceived Value, and Brand Preference-Evidence from Branded Mobile Apps |
| 指導教授: |
陳勁甫
Chen, Ching-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 智慧型手機 、品牌app 、品牌概念一致性 、TAM |
| 外文關鍵詞: | Smart phones, Branded apps, Brand concept consistency, TAM |
| 相關次數: | 點閱:102 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著智慧型手機以及行動上網的普及,行動行銷已變成業界關注的議題。根據專門分析應用程式生態的公司Distimo於2011年底發布的報告指出,91%的品牌至少在一個平台應用商店中發布了自己的apps。並且越來越多的品牌開始同時推出iOS和安卓平台apps,增強品牌在智慧手機上的曝光度和接觸消費者的機會。本研究整合科技接受模式以及顧客科技接受模式,除了將科技接受模式之顧客使用該科技之認知前因當作知覺價值的預測前因外,也將情感因子放入本研究架構,欲探討持續使用該品牌apps的使用者是否會因為該品牌提供的apps符合其認知面之功能性需求以及情感面之享樂性需求,因而提升使用者之知覺價值,進而對該品牌產生偏好。本研究針對兩款品牌路跑apps為例子,分別為運動品牌Nike所開發的Nike+以及台哥大所開發的mySports,兩者之延伸商品皆為路跑apps,因此本研究欲探討品牌概念一致性是否在知覺價值以及品牌偏好間是否扮演干擾的角色。品牌概念一致性設計兩份問卷發放給曾經使用過該兩款路跑apps的使用者。
本研究共發放617份,扣除無效問卷後,回收有效問卷545份,問卷有效率為88%。利用驗證性因素分析以及階層迴歸進行分析,研究發現如下:ㄧ、認知因素以及情感因素對知覺價值有顯著且正向之影響。二、知覺價值對品牌偏好亦有顯著且正向的影響。三、品牌偏好一致性在知覺價值以及品牌偏好間扮演干擾的角色。四、知覺價值在知覺有用性以及愉悅與品牌偏好間扮演完全中介的角色。
Along with technical development and the popularity of smart phones, mobile marketing has become the important issues which the brand concern. Many brand owners expect that launched their own branded apps can convey more information and services for users, and bring extra revenue into their business. Consumer Acceptance of Technology (CAT) integrates affect factors (pleasure and dominant) into a technology acceptance model (TAM) to understand consumer acceptance of apps. Technology Acceptance Model (TAM) explains the accept degree while people using a new technology. In this study, there are four main factors to explain the perceived value of using branded apps. The four factors are perceived usefulness, perceived ease of use, pleasure and dominant. Discussing relationships between perceived value and brand preference and explore how brand concept consistency moderate the relationship between perceived value and brand preference. A total of 617 questionnaires issued, 545 valid questionnaires were collected and analyzed, effective retrieved rate of 88%. Statistical methods are including the CFA, descriptive unvaried analysis and regression analysis that analyzing the moderator effect and mediator effect. The conclusions are as follows:
1. Perceived usefulness, perceived ease of use, pleasure and dominant have positive relationship on perceived value.
2. Perceived value has a positive relationship on brand preference.
3. Perceived value played a full mediator role among perceived value, pleasure and brand preference.
4. Brand concept consistency moderate the relationship between perceived value and brand preference.
1. Aladwani, A. M., & Palvia, P. C. (2002). Developing and validating an instrument for measuring user-perceived web quality. Information & Management, 39(6), 467-476.
2. Algesheimer, R., Dholakia, U., & Hermann, A. (2004). Interplay between Brand and Brand Community: Evidence from European Car Clubs. Available at SSRN 534542.
3. Ang, L. (2011). Community relationship management and social media. Journal of Database Marketing & Customer Strategy Management, 18(1), 31-38.
4. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
5. Bolton, R. N., & Drew, J. H. (1991). A multistage model of customers' assessments of service quality and value. Journal of Consumer Research, 375-384.
6. Bagozzi, R. P., Davis, F. D., & Warshaw, P. R. (1992). Development and test of a theory of technological learning and usage. Human relations, 45(7), 659-686.
7. Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: a review. International Journal of Research in Marketing, 13(2), 139-161.
8. Blythe, J. (1999). Innovativeness and newness in high-tech consumer durables. Journal of Product & Brand Management, 8(5), 415-429.
9. Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS Quarterly, 25(3), 351-370.
10. Bellman, S., Potter, R. F., Treleaven-Hassard, S., Robinson, J. A., & Varan, D. (2011). The effectiveness of branded mobile phone apps. Journal of Interactive Marketing, 25(4), 191-200.
11. Blazevic, V., Hammedi, W., Garnefeld, I., Rust, R. T., Keiningham, T., Andreassen, T. W. & Carl, W. (2013). Beyond traditional word-of-mouth: an expanded model of customer-driven influence. Journal of Service Management, 24(3), 294-313.
12. Bolton, R. N., Parasuraman, A., Hoefnagels, A., Migchels, N., Kabadayi, S., Gruber, T. & Solnet, D. (2013). Understanding Generation Y and their use of social media: a review and research agenda. Journal of Service Management, 24(3), 245-267.
13. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests.Psychometrika, 16(3), 297-334.
14. Carmines, E. G., & McIver, J. P. (1981). Analyzing models with unobserved variables: Analysis of covariance structures. Social measurement: Current issues, 65-115.
15. Choi, K. S., Cho, W. H., Lee, S., Lee, H., & Kim, C. (2004). The relationships among quality, value, satisfaction and behavioral intention in health care provider choice: a South Korean study. Journal of Business Research, 57(8), 913-921.
16. Chiu, C. M., Hsu, M. H., Sun, S. Y., Lin, T. C., & Sun, P. C. (2005). Usability, quality, value and e-learning continuance decisions. Computers & Education, 45(4), 399-416.
17. Chen, C. F. (2008). Investigating structural relationships between service quality, perceived value, satisfaction, and behavioral intentions for air passengers: Evidence from Taiwan. Transportation Research Part A: Policy and Practice, 42(4), 709-717.
18. Chen, C. F., & Chen, F. S. (2010). Experience quality, perceived value, satisfaction and behavioral intentions for heritage tourists. Tourism Management, 31(1), 29-35.
19. Donovan, R. J., & Rossiter, J. R. (1982). Store atmosphere: an environmental psychology approach. Journal of retailing, 58(1), 34-57.
20. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
21. Dabholkar, P. A., & Bagozzi, R. P. (2002). An attitudinal model of technology-based self-service: moderating effects of consumer traits and situational factors. Journal of the Academy of Marketing Science, 30(3), 184-201.
22. Delone, W. H. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9-30.
23. Dubey, S. K., & Rana, A. (2010). Analytical Roadmap to Usability Definitions and Decompositions. International Journal of Engineering Science and Technology, 2(9), 4723-4729.
24. Franko, O. I., & Tirrell, T. F. (2012). Smartphone app use among medical providers in ACGME training programs. Journal of Medical Systems, 36(5), 3135-3139.
25. Gentile, C., Spiller, N., & Noci, G. (2007). How to Sustain the Customer Experience:: An Overview of Experience Components that Co-create Value With the Customer. European Management Journal, 25(5), 395-410.
26. Hair Jr, J. F., Anderson, R. E., & Tatham, R. L. William С Black. (1998). Multivariate data analysis with readings.
27. Hellier, P. K., Geursen, G. M., Carr, R. A., & Rickard, J. A. (2003). Customer repurchase intention: a general structural equation model. European Journal of Marketing, 37(11/12), 1762-1800.
28. Hong, S., Thong, J. Y., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: a comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819-1834.
29. Hsu, C. L., & Lin, J. C. C. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65-74.
30. Jamal, A., & Goode, M. M. (2001). Consumers and brands: a study of the impact of self-image congruence on brand preference and satisfaction. Marketing Intelligence & Planning, 19(7), 482-492.
31. Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS quarterly, 23(2).
32. Kim, S., & Stoel, L. (2004). Dimensional hierarchy of retail website quality. Information & Management, 41(5), 619-633.
33. Kim, H. W., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile internet: an empirical investigation. Decision Support Systems, 43(1), 111-126.
34. Kulviwat, S., Bruner, I. I., Gordon, C., Kumar, A., Nasco, S. A., & Clark, T. (2007). Toward a unified theory of consumer acceptance technology. Psychology & Marketing, 24(12), 1059-1084.ISO 690
35. Kang, Y. S., Hong, S., & Lee, H. (2009). Exploring continued online service usage behavior: The roles of self-image congruity and regret. Computers in Human Behavior, 25(1), 111-122.
36. Kim, E., Lin, J. S., & Sung, Y. (2013). To App or Not to App: Engaging Consumers via Branded Mobile Apps. Journal of Interactive Advertising, 13(1), 53-65.
37. Liu, C., & Arnett, K. P. (2000). Exploring the factors associated with Web site success in the context of electronic commerce. Information & Management, 38(1), 23-33.
38. Lee, K. C., & Chung, N. (2009). Understanding factors affecting trust in and satisfaction with mobile banking in Korea: A modified DeLone and McLean’s model perspective. Interacting with Computers, 21(5), 385-392.
39. Laroche, M., Habibi, M. R., Richard, M. O., & Sankaranarayanan, R. (2012). The effects of social media based brand communities on brand community markers, value creation practices, brand trust and brand loyalty. Computers in Human Behavior, 28(5), 1755-1767.
40. Lariviere, B., Joosten, H., Malthouse, E. C., Van Birgelen, M., Aksoy, P., Kunz, W. H., & Huang, M. H. (2013). Value fusion: the blending of consumer and firm value in the distinct context of mobile technologies and social media. Journal of Service Management, 24(3), 268-293.
41. Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. the MIT Press.
42. MADAN, A., & DUBEY, S. K. (2012). Usability Evaluation Methods: A Literature Review. International Journal of Engineering Science and Technology, 4(2), 590-599.
43. Maghnati, F., & Ling, K. C. (2013). Exploring the Relationship between Experiential Value and Usage Attitude towards Mobile Apps among the Smartphone Users. International Journal of Business and Management, 8(4), p1.
44. Oh, H. (1999). Service quality, customer satisfaction, and customer value: A holistic perspective. International Journal of Hospitality Management, 18(1), 67-82.
45. Oliver, R. L. (1999). Whence consumer loyalty? Journal of Marketing, 33-44.
46. O'Brien, H. L., Absar, R., & Halbert, H. (2013). Toward a Model of Mobile User Engagement.
47. Premkumar, G., & Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. Omega, 36(1), 64-75.
48. Petter, S., DeLone, W., & McLean, E. R. (2013). Information Systems Success: The Quest for the Independent Variables. Journal of Management Information Systems, 29(4), 7-62.
49. Racherla, Pradeep, Christopher Furner, and Jeffry Babb. "Conceptualizing the Implications of Mobile App Usage and Stickiness: A Research Agenda." Available at SSRN 2187056 (2012).
50. Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information systems research, 8(3), 240-253.
51. Schmitt, B. (1999). Experiential marketing. Journal of Marketing Management, 15(1-3), 53-67.
52. Shankar, V., Smith, A. K., & Rangaswamy, A. (2003). Customer satisfaction and loyalty in online and offline environments. International Journal of Research in Marketing, 20(2), 153-175.
53. Thong, J. Y., Hong, S. J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810.
54. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478.
55. Vock, M., van Dolen, W., & de Ruyter, K. (2013). Understanding Willingness to Pay for Social Network Sites. Journal of Service Research.
56. Weijters, B., Rangarajan, D., Falk, T., & Schillewaert, N. (2007). Determinants and outcomes of customers' use of self-service technology in a retail setting. Journal of Service Research, 10(1), 3-21.
57. Wang, Y. S., & Liao, Y. W. (2008). Assessing e Government systems success: A validation of the DeLone and McLean model of information systems success. Government Information Quarterly, 25(4), 717-733.
58. Wirtz, J., Den Ambtman, A., Bloemer, J., Horváth, C., Ramaseshan, B., Van De Klundert, J. & Kandampully, J. (2013). Managing brands and customer engagement in online brand communities. Journal of Service Management, 24(3), 223-244.
59. Yim, C. K., Chan, K. W., & Lam, S. S. (2012). Do customers and employees enjoy service participation? Synergistic effects of self-and other-efficacy. Journal of Marketing, 76(6), 121-140.
60. Yun, H., Han, D., & Lee, C. C. (2013). UNDERSTANDING THE USE OF LOCATION-BASED SERVICE APPLICATIONS: DO PRIVACY CONCERNS MATTER? Journal of Electronic Commerce Research, 14(3).