| 研究生: |
曾博彥 Tseng, Po-Yen |
|---|---|
| 論文名稱: |
流動催化法製備原位改質氣相成長奈米碳纖維應用於環氧樹脂機械性能之研究 Synthesis of in-situ modified vapor grown carbon nanofiber using floating catalyst method and the mechanical properties of VGCNF/epoxy composite |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 化學氣相沉積法 、奈米碳纖維 、表面改質 、複合材料 |
| 外文關鍵詞: | CVD, CNFs, surface modified, composite |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣相成長碳纖維(vapor grown carbon fiber,VGCF)在十九世紀末便被發現,但有目的地合成奈米碳纖維,則是在20世紀90年代奈米碳管 (carbon nanotube,CNT)的出現後,再度引起各界對於VGCF的興趣。因為VGCF的製程方式與CNT非常相似,只需適當地改變一些製程參數即可分別合成出VGCF與CNT。近代由於奈米科技的來臨,因此有了氣相成長奈米碳纖維 (vapor grown carbon nanofiber,VGCNF or VGNF)這新稱號。奈米碳纖維不僅具有氣相生長碳纖維所具有的特性,而且在結構、性能和應用等方面又與奈米碳管相似。
本研究以催化化學氣相沉積法(catalytic chemical vapor deposition,CCVD)合成奈米碳纖維,以甲烷為碳源氣體、氫氣為乘載氣體、二茂鐵為催化劑。實驗主要將重點放在藉由調控不同的參數以達到合成特定直徑的目的,且我們在原物料中添加了含氧原子的碳源異丙醇,在成長奈米碳纖維的過程中通入,提供氧的來源對碳纖維做氧化改質,以達到我們原位(in-situ)表面改質的目的。本研究以以掃描式電子顯微鏡(scanning electron microscopy, SEM)觀察奈米碳材產物的形貌,熱重分析儀(TGA)分析奈米碳材產物的高溫抗氧化能力,拉曼光譜儀分析奈米碳纖維的結晶度以及結構,X 光電子能譜儀(X-ray photoelectron spectroscopy, XPS)和傅立葉轉換紅外線光譜(Fourier transform infrared spectroscopy, FTIR)鑑定碳纖維的表面化學組成。我們從SEM可以觀察到需要一適當的碳氫比例以及足夠催化劑的承載量,才能達到最佳的製程條件,成長出高純度的奈米碳纖維,並隨著我們控制不同的氣體流速可以得到特定直徑的碳纖維。因為採用水平式流動催化法此半連續製程,故隨著奈米碳纖維合成的時間上升,產量也隨之上升,而XPS分析更發現隨著奈米碳纖維合成的時間上升,所嫁接的氧官能基比例也跟著提高,達到我們in-situ改質的目的。
Vapor grown carbon fibers were found about one hundred year ago. However, recent interest in carbon nanotubes (CNT) has generated renewed interests in VGCF due to the similarities in the growth processes. By simply reducing the growth time, the diameter of carbon fiber can be reduced to form vapor grown carbon nanofibers. The diameter of VGCNF is between that of VGCF and CNT. This gives VGCNF comparable characteristics to VGCF or CNT. A chemical vapor deposition method has been used to produce vapor grown carbon nanofibers having controllable diameters. An iron-containing compound (ferrocene) and mixtures of H2/CH4 were used as the catalyst and feedstock, respectively. In-situ surface modification of VGCNFs was performed using a carbon source containing oxygen (2-propanol), which was mixed into the feedstock. The resulting VGCNFs were examined using scanning electron microscopy for the morphology and diameter, Raman spectroscopy for the crystallinity and micro-structure and thermogravimetry analyzer for thermal stability. Using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy for the surface chemistry of VGCNFs. In order to achieve the optimal process conditions, which can get high purity VGCNFs, requires a suitable CH4/H2 ratio and sufficient catalyst. By using a semi-continuous process, the yield of VGCNF increases as synthesis time increases. We can observe the ratio of carboxyl groups increases as synthesis time increases by using XPS.
1. Iijima S: Helical Microtubules of Graphitic Carbon. Nature 1991, 354:56-58.
2. Lake ML, Jacobsen RD: Cost Modeling of VGCF, ASI R-C9706. 1997.
3. Heremans J, Beetz CP: Thermal-Conductivity and Thermopower of Vapor-Grown Graphite Fibers. Physical Review B 1985, 32:1981-1986.
4. Heremans J: Electrical-Conductivity of Vapor-Grown Carbon-Fibers. Carbon 1985, 23:431-436.
5. Tibbetts GG: Vapor Grown Carbon-Fibers - Status and Prospects. Carbon 1989, 27:745-747.
6. Jacobsen RL, Tritt TM, Guth JR, Ehrlich AC, Gillespie DJ: Mechanical-Properties of Vapor-Grown Carbon-Fiber. Carbon 1995, 33:1217-1221.
7. Daumit GP: Summary of Panel Discussion, Carbon-Fiber Industry - Current and Future. Carbon 1989, 27:759-764.
8. Madronero A, Merino C: Some geometrical singularities in the characterization of vapor grown carbon fibers using laser diffraction technique. Materials Research Bulletin 1998, 33:1503-1515.
9. Ishioka M, Okada T, Matsubara K, Inagaki M, Hishiyama Y: Electrical-Resistivity, Magnetoresistance, and Morphology of Vapor-Grown Carbon-Fibers Prepared in a Mixture of Benzene and Linz-Donawitz Converter Gas by Floating Catalyst Method. Journal of Materials Research 1993, 8:1866-1874.
10. Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A: Pyrolytic Carbon Nanotubes from Vapor-Grown Carbon-Fibers. Carbon 1995, 33:873-881.
11. Li YY, Mochidzuki K, Sakoda A, Suzuki M: Activation studies of vapor-grown carbon fibers with supercritical fluids. Carbon 2001, 39:2143-2150.
12. Endo M, Takeuchi K, Hiraoka T, Furuta T, Kasai T, Sun X, Kiang CH, Dresselhaus MS: Stacking nature of graphene layers in carbon nanotubes and nanofibres. Journal of Physics and Chemistry of Solids 1997, 58:1707-1712.
13. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE: C-60 - Buckminsterfullerene. Nature 1985, 318:162-163.
14. Ma HM, Zeng JJ, Realff ML, Kumar S, Schiraldi DA: Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Composites Science and Technology 2003, 63:1617-1628.
15. Xu J, Donohoe JP, Pittman CU: Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites. Composites Part a-Applied Science and Manufacturing 2004, 35:693-701.
16. Finegan IC, Tibbetts GG, Glasgow DG, Ting JM, Lake ML: Surface treatments for improving the mechanical properties of carbon nanofiber/thermoplastic composites. Journal of Materials Science 2003, 38:3485-3490.
17. Lakshminarayanan PV, Toghiani H, Pittman CU: Nitric acid oxidation of vapor grown carbon nanofibers. Carbon 2004, 42:2433-2442.
18. Baek JB, Lyons CB, Tan LS: Grafting of vapor-grown carbon nanofibers via in-situ polycondensation of 3-phenoxybenzoic acid in poly(phosphoric acid). Macromolecules 2004, 37:8278-8285.
19. Glasgow D, Lake M: Production of high surface energy, high surface area vapor grown carbon fiber., vol. US Patent 6,506,3552003.
20. Hughes TV, Chambers CR: Manufacture of carbon filaments. vol. U.S. Patent, 4054801889.
21. Davis WR, Slawson RJ, Rigby GR: An Unusual Form of Carbon. Nature 1953, 171:756-756.
22. Hofer LJE, Sterling E, Mccartney JT: Structure of the Carbon Deposited from Carbon Monoxide on Iron, Cobalt and Nickel. Journal of Physical Chemistry 1955, 59:1153-1155.
23. Kauffman HF, Pittsburgh, Griffiths DJ, Falls B, Mackay JS: PROCESS FOR MAKING FIBROUS CARBON. vol. 27963311957.
24. Tibbetts GG, Bernardo CA, Gorkiewicz DW, Alig RL: Role of Sulfur in the Production of Carbon-Fibers in the Vapor-Phase. Carbon 1994, 32:569-576.
25. Robertso.Sd: Graphite Formation from Low Temperature Pyrolysis of Methane over Some Transition Metal Surfaces. Nature 1969, 221:1044-&.
26. Baker RTK, Barber MA, Waite RJ, Harris PS, Feates FS: Nucleation and Growth of Carbon Deposits from Nickel Catalyzed Decomposition of Acetylene. Journal of Catalysis 1972, 26:51-&.
27. Oberlin A, Endo M, Koyama T: High-Resolution Electron-Microscope Observations of Graphitized Carbon-Fibers. Carbon 1976, 14:133-135.
28. Ajayan PM, Iijima S: Smallest Carbon Nanotube. Nature 1992, 358:23-23.
29. Endo M, Kroto HW: Formation of Carbon Nanofibers. Journal of Physical Chemistry 1992, 96:6941-6944.
30. Rodriguez NM, Kim MS, Baker RTK: Carbon Nanofibers - a Unique Catalyst Support Medium. Journal of Physical Chemistry 1994, 98:13108-13111.
31. Endo M, Kim YA, Matusita T, Hayashi T: From Vapor-Grown Carbon Fibers (VGCFs) to Carbon Nanotubes. NATO Science Series 2001, 372:51-61.
32. Ishioka M, Okada T, Matsubara K: Formation of Vapor-Grown Carbon-Fibers in Co-Co2-H2 Mixtures .2. Influence of Catalyst. Carbon 1992, 30:865-868.
33. Biro LP, Bernardo CA, Tibbetts GG, Lambin P: Carbon filaments and nanotubes: common origins, differing applications?: Kluwer academic publishers; 2001.
34. Hoque A, Alam MK, Tibbetts GG: Synthesis of catalyst particles in a vapor grown carbon fiber reactor. Chemical Engineering Science 2001, 56:4233-4243.
35. Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, Dresselhaus MS: Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Applied Physics Letters 1998, 72:3282-3284.
36. Ci LJ, Li YH, Wei BQ, Liang J, Xu CL, Wu DH: Preparation of carbon nanofibers by the floating catalyst method. Carbon 2000, 38:1933-1937.
37. Holstein WL: The Roles of Ordinary and Soret Diffusion in the Metal-Catalyzed Formation of Filamentous Carbon. Journal of Catalysis 1995, 152:42-51.
38. Ishioka M, Okada T, Matsubara K: Preparation of Vapor-Grown Carbon-Fibers by Floating Catalyst Method in Linz-Donawitz Converter Gas - Influence of Catalyst Size. Carbon 1993, 31:699-703.
39. Tibbetts GG, Balogh MP: Increase in yield of carbon fibres grown above the iron/carbon eutectic. Carbon 1999, 37:241-247.
40. Baker RTK, Harris PS, Thomas RB, Waite RJ: Formation of Filamentous Carbon from Iron, Cobalt and Chromium Catalyzed Decomposition of Acetylene. Journal of Catalysis 1973, 30:86-95.
41. Baker RTK, Chludzinski JJ, Lund CRF: Further-Studies of the Formation of Filamentous Carbon from the Interaction of Supported Iron Particles with Acetylene. Carbon 1987, 25:295-303.
42. Baker RTK, Chludzinski JJ, Dudash NS, Simoens AJ: The Formation of Filamentous Carbon from Decomposition of Acetylene over Vanadium and Molybdenum. Carbon 1983, 21:463-468.
43. Tibbetts GG, Devour MG, Rodda EJ: An Adsorption-Diffusion Isotherm and Its Application to the Growth of Carbon Filaments on Iron Catalyst Particles. Carbon 1987, 25:367-375.
44. Audier M, Oberlin A, Oberlin M, Coulon M, Bonnetain L: Morphology and Crystalline Order in Catalytic Carbons. Carbon 1981, 19:217-224.
45. Nielsen JR, Trimm DL: Mechanisms of Carbon Formation on Nickel-Containing Catalysts. Journal of Catalysis 1977, 48:155-165.
46. Oberlin A, Endo M, Koyama T: Filamentous Growth of Carbon through Benzene Decomposition. Journal of Crystal Growth 1976, 32:335-349.
47. Kato T, Haruta K, Kusakabe K, Morooka S: Formation of Vapor-Grown Carbon-Fibers on a Substrate. Carbon 1992, 30:989-994.
48. Kato T, Kusakabe K, Morooka S: Process of Formation of Vapor-Grown Carbon-Fibers by Gas-Phase Reaction Using Ultrafine Iron Catalyst Particles. Journal of Materials Science Letters 1992, 11:674-677.
49. Yoon YJ, Baik HK: Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition. Diamond and Related Materials 2001, 10:1214-1217.
50. Tibbetts GG: Why Are Carbon Filaments Tubular. Journal of Crystal Growth 1984, 66:632-638.
51. Yan GS, Li HJ, Hao ZB, Han HM: Formation of nano-combi carbon fibers on a planar silicon substrate using (TiO)SO4 as a catalyst precursor. Carbon 2002, 40:794-797.
52. Baker RTK: Catalytic Growth of Carbon Filaments. Carbon 1989, 27:315-323.
53. Rodriguez NM: A Review of Catalytically Grown Carbon Nanofibers. Journal of Materials Research 1993, 8:3233-3250.
54. Rodriguez NM, Chambers A, Baker RTK: Catalytic Engineering of Carbon Nanostructures. Langmuir 1995, 11:3862-3866.
55. Bessel CA, Laubernds K, Rodriguez NM, Baker RTK: Graphite nanofibers as an electrode for fuel cell applications. Journal of Physical Chemistry B 2001, 105:1115-1118.
56. Park C, Baker RTK: Catalytic behavior of graphite nanofiber supported nickel particles. 2. The influence of the nanofiber structure. Journal of Physical Chemistry B 1998, 102:5168-5177.
57. De Jong KP, Geus JW: Carbon nanofibers: Catalytic synthesis and applications. Catalysis Reviews-Science and Engineering 2000, 42:481-510.
58. Terrones H, Hayashi T, Munoz-Navia M, Terrones M, Kim YA, Grobert N, Kamalakaran R, Dorantes-Davila J, Escudero R, Dresselhaus MS, Endo M: Graphitic cones in palladium catalysed carbon nanofibres. Chemical Physics Letters 2001, 343:241-250.
59. Kato T, Matsumoto T, Saito T, Hayashi JI, Kusakabe K, Morooka S: Effect of Carbon Source on Formation of Vapor-Grown Carbon-Fiber. Carbon 1993, 31:937-940.
60. Rodriguez NM, Kim MS, Baker RTK: Promotional Effect of Carbon-Monoxide on the Decomposition of Ethylene over an Iron Catalyst. Journal of Catalysis 1993, 144:93-108.
61. Tanaka A, Yoon SH, Mochida I: Formation of fine Fe-Ni particles for the non-supported catalytic synthesis of uniform carbon nanofibers. Carbon 2004, 42:1291-1298.
62. Neumayer H, Haubner R: Formation of carbon-nano-fibres and carbon-nanotubes with a vertical flow-reactor. Diamond and Related Materials 2004, 13:1191-1197.
63. Krishnankutty N, Rodriguez NM, Baker RTK: Effect of copper on the decomposition of ethylene over an iron catalyst. Journal of Catalysis 1996, 158:217-227.
64. Olsson RG, Turkdoga.Et: Catalytic Effect of Iron on Decomposition of Carbon-Monoxide .2. Effect of Additions of H2, H2o, Co2, So2 and H2s. Metallurgical Transactions 1974, 5:21-26.
65. Jablonski GA, Geurts FW, Sacco A, Biederman RR: Carbon Deposition over Fe, Ni, and Co Foils from Co-H2-Ch4-Co2-H2o, Co-Co2, Ch4-H2, and Co-H2-H2o Gas-Mixtures .1. Morphology. Carbon 1992, 30:87-98.
66. Ci LJ, Wei JQ, Wei BQ, Liang J, Xu CL, Wu DH: Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon 2001, 39:329-335.
67. Mukai SR, Masuda T, Matsuzawa Y, Hashimoto K: The influence of catalyst particle size distribution on the yield of vapor-grown carbon fibers produced using the liquid pulse injection technique. Chemical Engineering Science 1998, 53:439-448.
68. Downs WB, Baker RTK: Novel Carbon Fiber-Carbon Filament Structures. Carbon 1991, 29:1173-1179.
69. Chambers A, Rodriguez NM, Baker RTK: Influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposition of ethylene. Journal of Materials Research 1996, 11:430-438.
70. Fan YY, Li F, Cheng HM, Su G, Yu YD, Shen ZH: Preparation, morphology, and microstructure of diameter-controllable vapor-grown carbon nanofibers. Journal of Materials Research 1998, 13:2342-2346.
71. Ren WC, Cheng HM: Herringbone-type carbon nanofibers with a small diameter and large hollow core synthesized by the catalytic decomposition of methane. Carbon 2003, 41:1657-1660.
72. Huang HJ, Kajiura H, Murakami Y, Ata MT: Metal sulfide catalyzed growth of carbon nanofibers and nanotubes. Carbon 2003, 41:615-618.
73. Ago H, Ohshima S, Uchida K, Yumura M: Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles. Journal of Physical Chemistry B 2001, 105:10453-10456.
74. Kim MS, Rodriguez NM, Baker RTK: The Interplay between Sulfur Adsorption and Carbon Deposition on Cobalt Catalysts. Journal of Catalysis 1993, 143:449-463.
75. Fan YY, Cheng HM, Wei YL, Su G, Shen ZH: The influence of preparation parameters on the mass production of vapor-grown carbon nanofibers. Carbon 2000, 38:789-795.
76. Ishioka M, Okada T, Matsubara K: Formation and Characteristics of Vapor Grown Carbon-Fibers Prepared in Linz-Donawitz Converter Gas. Carbon 1992, 30:975-979.
77. Ishioka M, Okada T, Matsubara K: Preparation of Vapor-Grown Carbon-Fibers in Straight Form by Floating Catalyst Method in Linz-Donawitz Converter Gas. Carbon 1993, 31:123-127.
78. 成會明編, 張勁燕校訂: 奈米碳管. 五南圖書出版公司; 2004.
79. Giannelis EP: Polymer layered silicate nanocomposites. Advanced Materials 1996, 8:29-&.
80. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O: Sorption of Water in Nylon-6 Clay Hybrid. Journal of Applied Polymer Science 1993, 49:1259-1264.
81. Krishnamoorti R, Vaia RA, Giannelis EP: Structure and dynamics of polymer-layered silicate nanocomposites. Chemistry of Materials 1996, 8:1728-1734.
82. Lan T, Kaviratna PD, Pinnavaia TJ: Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites. Chemistry of Materials 1995, 7:2144-2150.
83. Pinnavaia TJ, Lan T, Kaviratna PD, Wang Z, Shi HH: Clay-Reinforced Epoxy Nanocomposites - Synthesis, Properties and Mechanism of Formation. Abstracts of Papers of the American Chemical Society 1995, 210:61-Pmse.
84. Alexandre M, Dubois P: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science & Engineering R-Reports 2000, 28:1-63.
85. Biswas M, Ray SS: Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. New Polymerization Techniques and Synthetic Methodologies 2001, 155:167-221.
86. Giannelis EP, Krishnamoorti R, Manias E: Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes. Polymers in Confined Environments 1999, 138:107-147.
87. Andrews R, Weisenberger MC: Carbon nanotube polymer composites. Current Opinion in Solid State & Materials Science 2004, 8:31-37.
88. Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R: Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 2002, 35:8825-8830.
89. Potschke P, Fornes TD, Paul DR: Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 2002, 43:3247-3255.
90. Tibbetts GG, McHugh JJ: Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices. Journal of Materials Research 1999, 14:2871-2880.
91. Qian D, Dickey EC, Andrews R, Rantell T: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters 2000, 76:2868-2870.
92. Kumar S, Doshi H, Srinivasarao M, Park JO, Schiraldi DA: Fibers from polypropylene/nano carbon fiber composites. Polymer 2002, 43:1701-1703.
93. Allaoui A, Bai S, Cheng HM, Bai JB: Mechanical and electrical properties of a MWNT/epoxy composite. Composites Science and Technology 2002, 62:1993-1998.
94. Lafdi K, Matzek M: Carbon nanofibers as a nano-reinforcement for polymeric nanocomposites. In 48th International SAMPE symposium proceedings; Long Beach, USA. 2003.
95. Breuer O, Sundararaj U: Big returns from small fibers: A review of polymer/carbon nanotube composites. Polymer Composites 2004, 25:630-645.
96. Lau KT, Hui D: Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures. Carbon 2002, 40:1605-1606.
97. Schadler LS, Giannaris SC, Ajayan PM: Load transfer in carbon nanotube epoxy composites. Applied Physics Letters 1998, 73:3842-3844.
98. Tasis D, Tagmatarchis N, Bianco A, Prato M: Chemistry of carbon nanotubes. Chemical Reviews 2006, 106:1105-1136.
99. Zhu JH, Wei SY, Ryu J, Budhathoki M, Liang G, Guo ZH: In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. Journal of Materials Chemistry 2010, 20:4937-4948.
100. Arlen MJ, Wang D, Jacobs JD, Justice R, Trionfi A, Hsu JWP, Schaffer D, Tan LS, Vaia RA: Thermal-Electrical Character of in Situ Synthesized Polyimide-Grafted Carbon Nanofiber Composites. Macromolecules 2008, 41:8053-8062.
101. Heintze M, Bruser V, Brandl W, Marginean G, Bubert H, Haiber S: Surface functionalisation of carbon nano-fibres in fluidised bed plasma. Surface & Coatings Technology 2003, 174:831-834.
102. Bruser V, Heintze M, Brandl W, Marginean G, Bubert H: Surface modification of carbon nanofibres in low temperature plasmas. Diamond and Related Materials 2004, 13:1177-1181.
103. He P, Gao Y, Lian J, Wang LM, Qian D, Zhao J, Wang W, Schulz MJ, Zhou XP, Shi DL: Surface modification and ultrasonication effect on the mechanical properties of carbon nanofiber/polycarbonate composites. Composites Part a-Applied Science and Manufacturing 2006, 37:1270-1275.
104. Shi DL, Lian J, He P, Wang LM, Xiao F, Yang L, Schulz MJ, Mast DB: Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites. Applied Physics Letters 2003, 83:5301-5303.
105. Tsang SC, Chen YK, Harris PJF, Green MLH: A Simple Chemical Method of Opening and Filling Carbon Nanotubes. Nature 1994, 372:159-162.
106. Hiura H, Ebbesen TW, Tanigaki K: Opening and Purification of Carbon Nanotubes in High Yields. Advanced Materials 1995, 7:275-276.
107. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, et al: Fullerene pipes. Science 1998, 280:1253-1256.
108. Sano M, Kamino A, Okamura J, Shinkai S: Ring closure of carbon nanotubes. Science 2001, 293:1299-1301.
109. Sebastian D, Suelves I, Moliner R, Lazaro MJ: The effect of the functionalization of carbon nanofibers on their electronic conductivity. Carbon 2010, 48:4421-4431.
110. Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, Hsu WK, Hare JP, Townsend PD, Prassides K, et al: Controlled production of aligned-nanotube bundles. Nature 1997, 388:52-55.
111. Woo YS, Jeon DY, Han IT, Lee NS, Jung JE, Kim JM: In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition. Diamond and Related Materials 2002, 11:59-66.
112. Hinnen C, Imbert D, Siffre JM, Marcus P: An in-Situ Xps Study of Sputter-Deposited Aluminum Thin-Films on Graphite. Applied Surface Science 1994, 78:219-231.
113. Lascovich JC, Giorgi R, Scaglione S: Evaluation of the Sp2/Sp3 Ratio in Amorphous-Carbon Structure by Xps and Xaes. Applied Surface Science 1991, 47:17-21.
114. Gardner SD, Singamsetty CSK, Booth GL, He GR, Pittman CU: Surface Characterization of Carbon-Fibers Using Angle-Resolved Xps and Iss. Carbon 1995, 33:587-595.
115. Endo M: Grow Carbon-Fibers in the Vapor-Phase. Chemtech 1988, 18:568-576.
116. Robertson J: Diamond-like amorphous carbon. Materials Science & Engineering R-Reports 2002, 37:129-281.
校內:2018-08-19公開