簡易檢索 / 詳目顯示

研究生: 許峻瑜
Hsu, Chun-Yu
論文名稱: 磁性穿隧接面與鈣鈦礦系複合物之頻率相關磁電傳輸現象研究
Frequency-dependent Transport Phenomenon in Magnetic Tunnel Junctions and Perovskite-type Manganites Composites
指導教授: 黃榮俊
Huang, J. C. A.
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 180
中文關鍵詞: 磁性穿遂接面複數阻抗複數電容
外文關鍵詞: complex capacitance, complex impedance, magnetic tunnel junction
相關次數: 點閱:61下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用複數阻抗與電容頻譜探討磁性穿遂接面與鈣鈦礦系鐵磁導體-反鐵磁不良導體複合材料之磁電傳輸性質,其目的主要為瞭解這些材料中穿遂位壘與導體-不良導體之介面對材料之電磁傳輸行為的影響。
    首先,我們利用雙離子槍濺鍍系統成長鈷鐵-氧化鋁-鈷鐵磁性穿遂接面,改變不同的超薄金屬鋁氧化時間,由穿遂磁阻的量測結果我們得到不足氧化、適當氧化與過度氧化之磁性穿遂接面; Cole-Cole形式之複數電容結果顯示複數電容頻譜的特徵幾乎是超薄絕緣層氧化過程的指紋;此外,我們也進一步利用等效電路對複數電容與其對應的複數阻抗頻譜進行分析,我們發現金屬-絕緣體之介面電阻與直流之接面電阻隨氧化時間之變化幾乎一致,其結果說明磁性穿遂接面之電磁傳輸特性同時受到絕緣層品質及金屬-絕緣體介面條件之影響。
    接著我們進一步利用低能量Ar離子對磁性穿遂接面之底層鐵磁性電極進行轟擊,製備具有不同介面粗糙度之磁性穿遂接面;隨著轟擊時間增加,我們觀察到除了磁性穿遂接面的磁阻隨之降低之外,磁阻在正負偏壓區會出現不對稱性。此穿遂磁阻在正負偏壓區之不對稱性是由於在上下介面有不同缺陷密度,進而引致不同的捕捉態密度,導致在正負偏壓區之自旋極化電流不同所致。
    相較於非晶氧化鋁絕緣層之磁性穿遂接面,氧化鎂絕緣層之磁性穿遂接面其絕緣層紋理程度對穿遂磁阻比率影響極為重要;我們利用不同的退火條件去改變氧化鎂絕緣層之紋理與介面條件,同時利用複數阻抗、電容頻譜及等效電路模型進行分析,結果發現適當的退火條件會改善氧化鎂絕緣層紋理與介面條件,進而增加同調穿遂電流改善穿遂磁阻比率。
    除了基本的磁性穿遂接面三層結構之外,我們亦利用雙離子槍濺鍍系統對鈷鐵硼-銣-鈷鐵硼之人工反鐵磁層進行輔助濺鍍,對無輔助濺鍍之人工反鐵磁層,其反鐵磁耦合能量約為-0.04(耳格/平方公分),在60伏的輔助濺鍍電壓下,反鐵磁耦合能量增大到約為-0.13(耳格/平方公分);反鐵磁耦合能變化之原因一般歸因於薄膜紋理、中間層是否穿孔以及介面粗糙度,我們分別利用X光繞射、退火與X光反射率對這些因素進行研究,結果發現層與層間的介面粗糙度改善是導致離子輔助濺鍍之反鐵磁耦合能增大的主因。
    最後,我們針對鈣鈦礦系之鐵磁性導體(La0.7Sr0.3MnO3, 113)與反鐵磁性不良導體(La1.4Sr1.6Mn2O7, 327)複合材料之磁阻抗效應進行研究;首先我們量測純327之直流偏壓相關複數阻抗頻譜,由等效電路分析之結果顯示327之晶粒邊界貢獻對直流偏壓有兩種不同的響應(一與直流偏壓相關,另一與直流偏壓無關);此外,我們進一步研究113-327之交流磁阻抗的起源,考慮在113-327介面與327晶粒邊界之缺陷所引致的自旋電流貢獻以及頻率引致之自旋相關量子井效應,可以適切的描述在低場與高場的113-327複合材料之磁阻抗效應。這個模型可以被推廣應用到其他鐵磁金屬與絕緣體或半導體之複合物或多層膜系統之磁阻抗效應之解釋。

    In this thesis, we have systematically investigated the electrical- and magneto-transport properties in magnetic tunnel junctions (MTJs) and ferromagnetic-metal/insulator (FM/I) perovskite-type manganites composites system by complex-capacitance (CC) and -impedance (CI) techniques. The purpose of this research is to understand how the tunnel barriers and interfaces influence the electrical- and magneto-transport properties in MTJs and FM/I composites. In chapter IV, we focus on the oxidation process of the untrathin metallic Al layer in CoFe-AlOx-CoFe MTJs. The CC and CI techniques have been utilized to characterize the MTJs with under-, proper-, and over-oxidized tunnel barriers. The CC spectra, containing the arcs and rising tails in a Nyquist plot, demonstrate great sensitivity on the oxidation of the Al layer in MTJs. The CI spectra of under-, proper-, and over-oxidized MTJs, analyzed by the equivalent circuit model (ECM), indicate that the electrical-transport behavior is dominated by the CoFe-AlOx (or CoFeOx) interfaces and the results are also consistent with the analysis by CC spectra.
    The FM/I interfacial properties in MTJs are studied by the bias-dependent CI spectra. The analysis of CI spectra for proper-oxidized MTJs by the ECM indicates the interfacial resistance has similar tendency to the dc transport, giving rise to the relations of electrical-transport to the defects at the interfaces. Besides, we also fabricate the MTJs with different interfacial roughness by low-energy Ar+ irradiation. The tunnel magnetoresistance (TMR) as a function of dc bias shows an asymmetry in positive and negative bias region for Ar+-irradiated MTJs. The asymmetry has been associated with the different trap states density distribution at upper and lower interfaces.
    Compared to the MTJs with the amorphous AlOx layer, the texture of a MgO layer is very important for TMR behavior, in additional to the interfacial condition. The CI and CC spectra have been also used to characterize the texture of a MgO layer and CoFe-MgO interfacial conditions by annealing treatment. Proper annealing temperature indeed enhances the textured structure of a MgO layer and decrease the interfacial defect density, thus increases the TMR ratio due to enhanced coherent tunneling process.
    In chapter V, we study the synthetic antiferromagnets (SyAFs) of CoFeB-Ru-CoFeB structure due to the ion-beam assisted deposition (IBAD) voltage. The antiferromagnetic coupling (Jex) for as-deposited SyAFs is about -0.04 erg/cm2, but SyAFs due to 60V IBAD shows a apparent increase of Jex to about -0.13 erg/cm2. The mechanism underlying for the Jex increase due to IBAD has been discussed on the crystalline formation, pinholes in the Ru layer, and interfacial roughness. X-ray reflectivity results suggest the interfacial roughness improvement could be responsible for the Jex enhancement due to IBAD.
    In chapter VI, the transport and magnetoimpedance (MI) effect in perovskite-type manganites FM/I composites have been studied. We first study the ac transport property of pure La1.4Sr1.6Mn2O7 (327) and find the two different grain boundary contributions (grain boundaries with different response to dc bias) for the electrical transport in 327. Furthermore, the field-dependent CI spectroscopy is employed to clarify the origins of MI effect at room temperature near the conduction threshold of [La0.67Sr0.33MnO3 (113)]1−x / [La1.67Sr1.33Mn2O7 (327)]x composites. The frequency-dependent high-field and low-field magnetoconductance spectra can be well interpreted by including the trap-state contributions in 113-327 interfaces and 327 grain boundaries, together with the frequency-induced spin-dependent quantum well state effect. The principle of this work could be applied to study the magnetoresistance and MI effects of magnetic granular composites.

    Chapter I Introduction to magnetic tunnel junctions (MTJs) and ferromagnetic-metal/insulator (FM/I) composites 1 1.1 Historical development of magnetic tunnel junctions....2 1.2 Paper review of magnetic tunnel junctions........7 1.3 Paper review of FM-I composites........... 29 1.4 My motivation...................38 Chapter II Spin-dependent tunneling and frequency-dependent dielectrics theories 43 2.1 Spin-dependent transport theory ...........43 2.1.1 The giant magnetoresistance (GMR) effect .....43 2.1.1.1 The two current model...........45 2.1.1.2 The giant magnetoresistance mechanism.... 47 2.1.1.3 Semi-classical models ...........49 2.1.1.4 Quantum mechanics models.........52 2.1.2 The tunnel magnetoresistance (TMR) effect ....53 2.1.2.1 Jullière’s model..............54 2.1.2.2 Free electron model ............56 2.1.2.3 Symmetry and spin filtering ......... 57 2.2 Impedance related theory ..............59 2.2.1 Dielectric relaxation .............59 2.2.2 Impedance-related functions ..........62 2.2.3 Brick layer model ..............64 2.2.4 Maxwell-Wagner interfacial polarization effect...67 Chapter III Experimental apparatus and principles 71 3.1 Ion-beam assisted deposition .............71 3.2 Shadow mask design ................74 3.3 Dual ion-beam sputter system for MTJs fabrication ....76 3.4 Electrical-transport measurement of MTJs and FM-I granular composites ....................78 3.5 Magneto-transport measurement of MTJs and FM-I granular composites ....................82 3.6 X-ray reflectivity .................83 Chapter IV High frequency technique to characterize the insulating layer quality and FM/I interfacial properties of AlOx and MgO-based MTJs 87 4.1 Complex-capacitance (CC) and –impedance (CI) techniques to probe the tunnel barrier quality of AlOx-based MTJs....88 4.1.1 CC spectroscopy as a probe for oxidation process of AlOx-based MTJs ..............88 4.1.2 ac impedance techniques to study oxidation process of tunnel barriers in CoFe–AlOx–CoFe MTJs .....98 4.2 DC bias-dependent CI spectra to characterize the FM/I interfacial properties.................110 4.2.1 Characterization of interfacial properties in MTJs by bias-dependent CI spectroscop .........110 4.2.2 Role of interfacial roughness on bias-dependent magnetoresistance and transport properties in MTJs..119 4.3 CC and CI techniques to study the annealing effect on MgO texture of MgO-based MTJs ............130 Chapter V Enhanced magnetic coupling and amorphous structure of CoFeB – Ru - CoFeB synthetic antiferromagnets by ion-beam assisted deposition 139 Chapter VI The dc low-field magnetoresistance and ac magnetoimpedance effect of La0.7Sr0.3MnO3/ La1.4Sr1.6Mn2O7 granular composites 150 6.1 Characterization of conduction property of La1.4Sr1.6Mn2O7 by CI spectra ....................151 6.2 Interfacial and quantum well effects on dc low-field magnetoresistance and ac magnetoimpedance effect...160 Chapter VII Conclusions 175 Appendix 178 A.1 Curriculum Vitae .................. 178

    Chapter I
    [1] S. Maekawa and U. G¨afvert, IEEE Trans. Magn. 18, 707 (1982).
    [2] Y. Suezawa, F. Takahashi and Y. Gondo, Jpn. J. Appl. Phys. 31, L1415 (1992).
    [3] J. Nowak and J. Rauluszkiewicz, J. Magn. Magn. Mater. 109, 79 (1992).
    [4] T. Yaoi, S. Ishio and T. Miyazaki, J. Magn. Magn. Mater. 126, 430 (1993).
    [5] T. S. Plaskett, P. P. Freitas, N. P. Barradas, M. F. da Silva and J. C. Soares, J. Appl. Phys. 76, 6104 (1994).
    [6] P. LeClair, J. S. Moodera and R. Meservey, J. Appl. Phys. 76, 6546 (1994).
    [7] T, Miyazaki and N. J. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
    [8] J. S. Moodera, L. R. Kinder, T. M. Wong and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
    [9] M. Tsunoda, K. Nishikawa, S. Ogata, and M. Takahashi, Appl. Phys. Lett. 80, 3135 (2002).
    [10] D. Wang, C. Nordman, J. M. Daughton, Z. Qian, and J. Fink, IEEE Trans. Magn. 40, 2269 (2004).
    [11] J. Mathon and A. Umerski, Phys. Rev. B 63, 220403, (2001).
    [12] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant and S. H. Yang, Nat. Mater. 3, 862 (2004).
    [13] D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 092502 (2005).
    [14] K. Tsunekawa, D. D. Djayaprawira, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 87, 072503 (2005).
    [15] S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 89, 042505 (2006).
    [16] J. Hayakawa, S. Ikeda, Y. M. Lee, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 232510 (2006).
    [17] J. S. Moodera, L. R. Kinder, J. Nowak, P. LeClair, and R. Meservey, Appl. Phys. Lett. 69, 708 (1996).
    [18] A. C. C. Yu, R. Doole, A. Petford-Long and T. Miyazaki, Jpn. J. Appl. Phys. 40 5058 (2001).
    [19] D. Song, J. Nowak and M. Covington, J. Appl. Phys. 87, 5197 (2000).
    [20] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nat. Mater., 3, 868 (2004).
    [21] W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. Maclaren, Phys. Rev. B 63, 054416 (2001).
    [22] J. S. Moodera, J. Nowak, and R. J. M. van de Veerdonk, Phys. Rev. Lett. 80, 2941 (1998).
    [23] Y. Ando, T. Miyakoshi, M. Oogane, T. Miyazaki, H. Kubota, K. Ando, and S. Yuasa, Appl. Phys. Lett. 87, 142502 (2005).
    [24] S. Yuasa, T. Katayama, T. Nagahama, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 87, 222508 (2005).
    [25] T. Dimopoulos, G. Gieres, J. Wecker, N. Wiese, Y. Luo and K. Samwer, J. Appl. Phys. 98, 073705 (2005).
    [26] S. Gupta, R. Ranjit, C. Mitra, P. Raychaudhuri, and R. Pinto, Appl. Phys. Lett. 78, 362 (2001).
    [27] P. Chen, D. Y. Xing, Y. W. Du, J. M. Zhu, and D. Feng, Phys. Rev. Lett. 87, 107202 (2001)
    [28] H. Kaiju, S. Fujita, T. Morozumi, and K. Shiiki, J. Appl. Phys. 91, 7430 (2002)
    [29] H. Kaiju , K Shiihi, S. Fujita and T. Morozumi, Jpn. J. Appl. Phys. 42, 1246 (2003).
    [30] L. F. Schelp, E. L. Rosa, J. -L. Maurice, F. Petroff and A. Vaurès, J. Magn. Magn. Mater. 205 170 (1999).
    [31] G. Landry, Y. Dong, J. Du, X. Xiang, and John Q. Xiao, Appl. Phys. Lett. 78, 501 (2001).
    [32] K. T. McCarthy, S. B. Arnason, and A. F. Hebard, Appl. Phys. Lett. 74, 302 (1999).
    [33] M. F. Gillies,a) A. E. T. Kuiper, R. Coehoorn and J. J. T. M. Donkers, A. Appl. Phys. 88, 429 (2000).
    [34] W. Oepts, M. F. Gillies, R. Coehoorn, R. J. M. van de Veerdonk and W. J. M. de Jonge, J. Appl. Phys. 89, 8038 (2001).

    Chapter II
    [1] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
    [2] G. Binash, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989).
    [3] R. Schad, C.D. Potter, P. Beliën, G. Verbanck, V.V. Moshchalkov, Y. Bruynseraede, Appl. Phys. Lett. 64, 3500 (1994).
    [4] N.F. Mott, Proc. Roy. Soc.London Ser. A 153, 699 (1936).
    [5] A. Fert, I.A. Campbell, Phys. Rev. Lett. 21, 1190 (1968); A. Fert, I.A. Campbell, J. Physique 32 (C1), 46 (1971).
    [6] A. Fert, I.A. Campbell, J. Phys. F 6, 849 (1976).
    [7] S. Maekawa, T. Shinjo (Eds.), Spin Dependent Transport in Magnetic Nanostructures, Taylor and Francis, 2002.
    [8] R.E. Camley, J. Barnas, Phys. Rev. Lett. 63, 664 (1989).
    [9] J. Barnas, A. Fuss, R.E. Camley, P. Grünberg, W. Zinn, Phys. Rev. B 42, 8110 (1990).
    [10] B. Dieny, P. Humbert, V.S. Speriosu, S. Metin, B.A. Gurney, P. Baumgart, H. Lefakis, Phys. Rev. B 45, 806 (1992); J. Barnas, A. Fuss, R.E. Camley, P. Grünberg, W. Zinn, Phys. Rev. B 42, 8110 (1990); R.Q. Hood, L.M. Falicov, Phys. Rev. B 46, 8287 (1992); V.V. Ustinov, E.A. Kravtsov, J. Magn. Magn. Mater. 148, 307 (1995); L.G. Pereira, J.L. Duvail, D.K. Lottis, J. Appl. Phys. 88, 4772 (2000).
    [11] A. Barthélémy, A. Fert, Phys. Rev. B 43, 13124 (1991).
    [12] B. Dieny, P. Humbert, V.S. Speriosu, S. Metin, B.A. Gurney, P. Baumgart, H. Lefakis, Phys. Rev. B 45, 806 (1992).
    [13] P.M. Levy, S. Zhang, A. Fert, Phys. Rev. Lett. 65, 1643 (1990).
    [14] M. Jullière, Phys. Lett. A 54 (1975) 225; M. Jullière, Thesis of Rennes University, No. B368/217, Rennes, 1975.
    [15] M. Bowen, V. Cros, F. Petroff, A. Fert, C. Martínez Boubeta, J.L. Costa-Krämer, J.V. Anguita, A. Cebollada, F. Briones, J.M. de Teresa, L. Morellón, M.R. Ibarra, F. Güell, F. Peiró, A. Cornet, Appl. Phys. Lett. 79, 1655 (2001).
    [16] J. Faure-Vincent, C. Tiusan, E. Jouguelet, F. Canet, M. Sajieddine, C. Bellouard, E. Popova, M. Hehn, F. Montaigne, A. Schuhl, Appl. Phys. Lett. 82, 4507 (2003).
    [17] J. Faure-Vincent, Ph.D., Université Henri Poincarré, Nancy, 2004.
    [18] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nature Mater. 3, 868 (2004).
    [19] S. S. P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.H. Yang, Nature Mater. 3, 862 (2004).
    [20] D.D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata,
    N.Watanabe, S. Yuasa, Y. Suzuki, K. Ando, Appl. Phys. Lett. 86, 092502 (2005).
    [21] Ph. Mavropoulos, N. Papanikolaou, P.H. Dederichs, Phys. Rev. Lett. 85, 1088
    (2000).
    [22] J. Mathon, A. Umerski, Phys. Rev. B 60, 1117 (1999).
    [23] J.M. MacLaren, X.-G. Zhang, W.H. Butler, X. Wang, Phys. Rev. B 59, 5470
    (1999).
    [24] W.H. Butler, X.-G. Zhang, T.C. Schulthess, J.M. MacLaren, Phys. Rev. B 63,
    054416 (2001).
    [25] C. Tiusan, J. Phys.: Condens. Matter (2005), submitted for publication.
    [26] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An
    Augmented Plane Wave + Local Orbitals Program for calculating Crystal
    Properties (K. Schwartz, Techn. Univ. Wien, Austria), 2001. ISBN
    3-9501031-1-2.
    [27] A. K. Jonscher, Dielectric Relaxation in Solids (Chelaea Dielectrics, London,
    1983)
    [28] S Song and F Placido, J. Stat. Mech.: Theor. Exp., 10, P10018 (2004)
    [29] J. Fleig, Solid State Ion., 131, 117 (2000)
    [30] M. Vollmann, R. Hagenbeck and R. Waser, J. Am. Ceram. Soc., 80, 2301 (1997)
    [31] J. Abrantes, J. Labrincha and J. Frade, Mater. Res. Bull., 35, 727 (2000)
    [32] J. C. Maxwell. A Treatise on Electricity and Magnetism Dover Publications,
    Dover (1954).
    [33] K.W. Wagner. Arch. Elektrotech. 2, 371 (1914).
    [34] R.W. Sillars. J. Proc. Inst. Elect. Engrs. 100, 199 (1937).

    Chapter III
    [1] http://www.junsun.com.tw/Chinese/T-IBD.htm
    [2] http://www.alacritas-consulting.com/sputter_deposition_for_thin_films.html
    [3] Agilent HP4294A operation manual.
    [4] H. Zabel, Appl. Phys. A 58, 159 (1994).

    Chapter IV
    4.1.1
    [1] G. A. Prinz, Science 282, 1660 (1998).
    [2] J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, F. Montaigne, and
    P. Seneor, Science 286, 507 (1999).
    [3] S. S. P. Parkin, R. E. Fontana, and A. C. Marley, J. Appl. Phys. 81, 5521
    (1997).
    [4] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
    [5] S. Yuasa, T. Nagahama, and Y. Suzuki, Science 297, 234 (2002).
    [6] J. S. Bae, K. H. Shin, T. D. Lee, and H. M. Lee, Appl. Phys. Lett. 80, 1168 (2002).
    [7] J. Nowak, D. Song, and E. Murdock, J. Appl. Phys. 87, 5203 (2000).
    [8] K. Knechten, P. LeClair, J. T. Kohlhepp, H. J. M. Swagten, B. Koopmans, and W. J. M. de Jonge, J. Appl. Phys. 91, 1675 (2001).
    [9] P. H. P. Koller, F. W. M. Vanhelmont, H. Boeve, R. Coehoorn, and W. J. M. de Jonge, J. Appl. Phys. 93, 8549 (2003).
    [10] M. F. Gillies, A. E. T. Kuiper, R. Coehoorn, and J. J. T. M. Donkers, J. Appl. Phys. 88, 429 (2000).
    [11] G. S. Nadkarin and J. G. Simmons, J. Appl. Phys. 43, 3741 (1972).
    [12] A. V. Hipple, Dielectrics and Waves (Artech, Boston, 1995).
    [13] P. Debye, Polar Molecules (Chemical Catalog Company, New York, 1929).

    4.1.2
    [1] G. A. Prinz, Science 282, 1660 (1998).
    [2] J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, F. Montaigne, and P. Seneor, Science 286, 507 (1999).
    [3] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
    [4] S. Yuasa, T. Nagahama, Y. Suzuki, Science 297, 234 (2002).
    [5] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant and S. H. Yang, Nature Materials 3, 862 (2004).
    [6] M. F. Gillies, A. E. T. Kuiper, R. Coehoorn and J. J. T. M. Donkers, J. Appl. Phys. 88, 429 (2000).
    [7] G. S. Nadkarni and J. G. Simmons, J. Appl. Phys. 43, 3741 (1971).
    [8] A. Hebard, S. Ajuria, and R. Eick, Appl. Phys. Lett. 51, 1349 (1987).
    [9] K. T. McCarthy, S. B. Arnason, and A. F. Hebard, Appl. Phys. Lett. 74, 302 (1999).
    [10[ J. C. A. Huang and C. Y. Hsu, Appl. Phys. Lett. 85, 5947 (2004).
    [11] S. Zhang, Phys. Rev. Lett. 83, 640 (1999).
    [12] G. Landry, Y. Dong, J. Du, X. Xiang, and John Q. Xiao, App. Phys. Lett. 78, 501 (2001).
    [13] K.T. McCarthy and A. F. Hebard, Phys. Rev. Lett. 90, 117201-1 (2004).
    [14] G. Palasantzas and J. Th. M. De Hosson, J. Appl. Phys. 93, 320 (2003).
    [15] Y.-P. Zhao, R. M. Gamache, G.-C Wang, T.-M. Lu, G. Palasantzas and J. Th. M. De Hosson, J. Appl. Phys. 89, 1325 (2001).

    4.2.1
    [1] H. Tsuge and T. Misuzuka, Appl. Phys. Lett., 71, 3296 (1997).
    [2] G. A. Prinz, Science, 282, 1660 (1998).
    [3] Dexin Wang, Cathy Nordman, James M. Daughton, Zhenghong Qian, and Jonathon Fink, IEEE Trans. Magn., 40, 2269 (2004).
    [4] Igor Žutić, Jaroslav Fabian and S. Das Sarma, Rev. Mod. Phys., 76, 323 (2004).
    [5] X. H. Xiang, T. Zhu, F. Sheng, Z. Zhang, and John Q. Xiao, IEEE Trans. Magn., 39, 2770 (2003).
    [6] K. T. McCarthy, S. B. Arnason, and A. F. Hebard, Appl. Phys. Lett., 74, 302 (1999).
    [7] S. Zhang, Phys. Rev. Lett., 83, 640 (1999).
    [8] H. Kaiju, S. Fujita, T. Morozumi, and K. Shiiki, J. Appl. Phys., 91, 7430 (2002).
    [9] J. G. Simons, J. Phys. D: Appl. Phys., 4, 613 (1971).
    [10] J. C. A. Huang and C. Y. Hsu, Appl. Phys. Lett., 85, 5947 (2004).
    [11] Peter Mark and Wolfgang Helfrich, J. Appl. Phys., 33, 205 (1962).

    4.2.2
    [1] G. A. Prinz, Science 282, 1660 (1998).
    [2] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant and S. H. Yang, Nature Materials 3, 862 (2004).
    [3] S. Zhang, P. M. Levy, A. C. Marley and S. S. P. Parkin, Phy. Rev. Lett. 79, 3744 (1997).
    [4] J. Zhang and R. M. White, J. Appl. Phys. 83, 6512 (1998).
    [5] X. H. Xiang, T. Zhu, J. Du, G. Landry and John Q. Xiao, Phy. Rev. B. 66, 174407 (2002).
    [6] L. Le Brizoual, P. Alont, M. Hehn, F. Montaigne, M. Alont, A. Schuhl and E. Snoeck, Appl. Phys. Lett. 86, 112505 (2005).
    [7] J. Schmalhorst, S. Kämmerer, G. Reiss and A. Hütten, Appl. Phys. Lett. 86, 052501 (2005).
    [8] Sung-Jin Ahn, Takeharu Kato, Hitoshi Kubota, Yasuo Ando and Terunobu Miyazaki, Appl. Phys. Lett. 86, 102506 (2005).
    [9] Yasuyoshi Miyamoto, Kenji Machida, Naoto Hayashi, Takahiko Tamaki and Haruo Okuda, J. Appl. Phys. 89, 6647 (2001).
    [10] J. C. A. Huang and C. Y. Hsu, Appl. Phys. Lett. 85, 5947 (2004).
    [11] G. Landry, Y. Dong, J. Du, X. Xiang and John Q. Xiao, Appl. Phys. Lett. 78, 501 (2001)

    4.3
    [1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, 294, 1488 (2001).
    [2] Dexin Wang, Cathy Nordman, James M. Daughton, Zhenghong Qian, and Jonathon Fink, IEEE Trans. Magn., 40, 2269 (2004).
    [3] J. Mathon and A. Umerski, Phys. Rev. B, 63, 220403 (2001).
    [4] Shinji Yuasa, Akio Fukushima, Hitoshi Kubota, Yoshishige Suzuki, and Koji Ando, Appl. Phys. Lett, 89, 042505 (2006).
    [5] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant and S. H. Yang, Nat. Mater., 3, 862 (2004).
    [6] D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki and K. Ando, Appl. Phys. Lett., 86, 092502 (2005).
    [7] Heejae Shim, B. K. Cho, Jin-Tae Kim, T. W. Kim and W. J. Park, J. Appl. Phys., 93, 7026 (2003).
    [8] J. C. A. Huang and C. Y. Hsu, Appl. Phys. Lett., 85, 5947 (2004).
    [9] J. C. A. Huang, C. Y. Hsu, Y. F. Liao, M. Z. Lin and C. H. Lee, J. Appl. Phys., 98, 103504-1 (2005).
    [10] Arthur von Hippel, “Dielectrics and Waves,” Artech, Boston, 1995.
    [11] J. G. Simons, J. Phys. D: Appl. Phys., 4, 613 (1971).

    Chapter V
    [1] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
    [2] Y. Jiang, S. Abe, T. Nozaki, N. Tezuka, and K. Inomata, Appl. Phys. Lett. 83, 2874 s2003d.
    [3] Y. M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 042506 (2006).
    [4] J. C. A. Huang and C. Y. Hsu, Appl. Phys. Lett. 85, 5947 (2004).
    [5] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99(1954).
    [6] K.L. Yu, M.Z. Lin, C.H. Lee, J.C.A. Huang, C.A. Ku, Physica B, 336, 151 (2003).
    [7] W. H. Butler, X.-G. Zhang, T. C. Schulthess, D. M. C. Nicholson, J. M. MacLaren, V. S. Speriosu, and B. A. Gurney, Phys. Rev. B 56, 14574 (1997).
    [8] D. Wang, C. Nordman, J. M. Daughton, Z. Qian, and J. Fink, IEEE Trans. Magn. 40, 2269 (2004).
    [9] J. Hayakawa, S. Ikeda, Y. M. Lee, F. Matsukura, and H. Ohno, Appl. Phys. Lett., 89, 232510 (2006).
    [10] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant and S. H. Yang, Nature Materials, 3, 862 (2004).
    [11] N. Wiese, T. Dimopoulos, M. Rührig, J. Wecker, H. Brückl, and G. Reiss, Appl. Phys. Lett. 85, 2020 (2004).
    [12] B. S. Chun, I. Yoo, Y. K. Kim, J. Y. Hwang, J. R. Rhee, T. Kim, and W. Park, Appl. Phys. Lett. 87, 082508 (2005).
    [13] A. Hashimoto, S. Saito, K. Omori, H. Takashima, T. Ueno, and M. Takahashi, Appl. Phys. Lett. 89, 032511 (2006).
    [14] D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki and K. Ando, Appl. Phys. Lett., 86, 092502 (2005).
    [15] S.S.P. Parkin, Phys. Rev. Lett., 67, 3598 (1991).
    [16] M. T. Johnson, R. Coehoorn, J. J. de Vries, N. W. E. McGee, J. aan de Stegge, and P. J. H. Bloemen, Phys. Rev. Lett. 69, 969 (1992).
    [17] J. F. Bobo, H. Kikuchi, O. Redon, E. Snoeck, M. Piecuch, R. L. White, Phys. Rev. B 60, 4131 (1999).
    [18] J. Unguris, R. J. Celotta, A. Davies, D. T. Pierce, and J. A. Stroscio, J. Appl. Phys., 81, 4342 (1997).
    [19] M. Jimbo, K. Komiyama, Y. Shirota, Y. Fujiwara, S. Tsunashima, and M. Matsuura, J. Magn. Magn. Mater., 165, 308 (1997).
    [20] S. V. Pietambaram, J. Janesky, R. W. Dave, J. J. Sun, G. Steiner, and J. M. Slaughter, IEEE Trans. Magn., 40, 2619 (2004).
    [21] J. C. A. Huang, C. Y. Hsu, Y. F. Liao, M. Z. Lin, and C. H. Lee, J. Appl. Phys., 98 103504 (2006).
    [22] W. H. Butler, X.-G Zhang and T. C. Schulthess, Phys. Rev. B, 63, 054416 (2001).

    Chapter VI
    6.1
    [1] Y. Tokura, Colossal Magnetoresistive Oxides. Gordon and Breach, New York, 2000.
    [2] C. Zener, Phys. Rev., 82, 403 (1951).
    [3] A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett., 74, 5144 (1995).
    [4] T. Kimura, A. Asamitsu, Y. Tomioka, and Y. Tokura, Phys. Rev. Lett., 79, 3720 (1997).
    [5] S. Gupta, R. Ranjit, C. Mitra, P. raychaudhuri, and R. Pinto, Appl. Phys. Lett., 78, 362 (2001).
    [6] T. Kimura, Y. Tomioka, H. Kuwahara, A. Asamitsu, M. Tamura, and Y. Tokura, Science, 274, 1698 (1996).
    [7] A. B. Granovsky, I. V. Bykov, E. A. Gan'shina, V. S. Gushchin, M. Inoue, Yu. E. Kalinin, A. A. Kozlov and A. N. Yurasov, J. Exp. Theor. Phys., 96, 1104 (2003).
    [8] J. C. A. Huang, C. Y. Hsu, Y. F. Liao, M. Z. Lin and C. H. Lee, J. Appl. Phys., 98, 103504 (2005).
    [9] O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, and J. M. Siqueiros, J. Appl. Phys., 97, 084108-1 (2005).

    6.2
    [1] a) S. Ohnuma, H. Fujimori, S. Mitani, T. Masumoto, J. Appl. Phys., 79, 5130 (1996). b) M. Yu, Y. Liu, A. Moser, D. Weller, D.J. Sellmyer, Appl. Phys. Lett., 75, 3992 (1999). c) C. P. Luo, D. J. Sellmyer, Appl. Phys. Lett., 75, 3162 (1999). d) K. Kang, Z.G. Zhang, C. Papusoi, T. Suzuki, Appl. Phys. Lett., 84, 404 (2004).
    [2] V. Moshnyaga, B. Damaschke, O. Shapoval, A. Belenchuk, J. Faupel, O. I. Lebedev, J. Verbeeck, G. van Tendeloo, M. Mücksch, V. Tsurkan, R. Tidecks, K. Samwer, Nat. Mater., 2, 247 (2003).
    [3] P. Chen, D. Y. Xing, Y. W. Du, J. M. Zhu, D. Feng, Phys. Rev. Lett., 87, 107202 (2001).
    [4] a) B. J. Hattink, A. Labarta, M. García del Muro, X. Batlle, F. Sánchez, M. Varela, Phys. Rev. B, 67, 033402 (2003). b) B. J. Hattink, M. García del Muro, Z. Konstantinovic, X. Batlle, A. Labarta, M. Varela, Phys. Rev. B, 73, 045418 (2006).
    [5] B. Hackenbroich, H. Zare-Kolsaraki, H. Micklitz, Appl. Phys. Lett., 81, 514 (2002).
    [6] S. Sankar, A. E. Berkowitz, David J. Smith, Phys. Rev. B, 62, 14273 (2000).
    [7] J. M. Coey, A. E. Berkowitz, Ll. Balcells, and F. F. Putris, Phys. Rev. Lett., 80, 3815 (1998).
    [8] N. Zhang, M. Wang, Appl. Phys. Lett., 88, 122111 (2006).
    [9] S. A. Koster, V. Moshnyaga, K. Samwer, O. I. Lebedev, G. van Tendeloo, O. Shapoval, A. Belenchuk, Appl. Phys. Lett., 81, 1648 (2002).
    [10] Andriy Ya. Vovk, Jian-Qing Wang, Weilie Zhou, Jibao He, Anatoliy M. Pogoriliy, Olena V. Shypil, Anatoliy F. Kravets, Hamid R. Khan, J. Appl. Phys., 91, 10017 (2002).
    [11] B. X. Huang, Y. H Liu, R. Z. Zhang, X. Yuan, C. J. Wang, L. M. Mei, J. Phys. D: Appl. Phys., 36, 1923 (2003).
    [12] J. L. MacManus-Driscoll, A. Sharma, Y. Bugoslavsky, W. Branford, L. F. Cohen, M. Wei, Adv. Mater., 18, 900 (2006).
    [13] S. Gupta, R. Ranjit, C. Mitra, P. Raychaudhuri, R. Pinto, Appl. Phys. Lett., 78, 362 (2001).
    [14] L.F. Schelp, E.L. Rosa, J.-L. Maurice, F. Petroff, A. Vaurès, J. Magn. Magn. Mater., 205, 170 (1999).
    [15] H. Kaiju, S. Fujita, T. Morozumi, K. Shiiki, J. Appl. Phys., 91, 7430 (2002).
    [16] Tian-Yi Cai, Ya-Jie Chen, Xiao-Yu Zhang, Zhen-Ya Li, J. Appl. Phys., 96, 3296 (2004).
    [17] A. Granovskya, A. Kozlov, S. Nedukh, S. Tarapov, J. Magn. Magn. Mater., 294, 117 (2005).
    [18] S. Kale, S. E. Lofland, S. M. Bhagat, Litty Sebastian, K. Ramesha, J. Gopalakrishnan, S. B. Ogale, Y. H. Li, and J. Garrison, Appl. Phys. Lett., 77, 2725 (2000).
    [19] A. J. Millis, Nature, 392, 147 (1998).
    [20] Arthur von Hippel, Dielectrics and Waves, Artech, Boston 1995.
    [21] J. C. A. Huang, C. Y. Hsu, J. Appl. Phys., 98, 064901 (2005).
    [22] C. Y. Hsu, H. Chou, B. Y. Liao, W. H. Chen, J. C. A. Huang, IEEE Trans. Magn., 42, 3356 (2006).
    [23] M. Knobel, K.R. Pirota, J. Magn. Magn. Mater., 33, 242 (2002).
    [24] J. G. Simmons, J. Phys. D : Appl. Phys., 4, 613 (1971).
    [25] M. Wilczynski, J. Barnas, J. Appl. Phys., 88, 5230 (2000).
    [26] T. Nozaki, Y. Jiang, Y. Kaneko, A. Hirohata, N. Tezuka, S. Sugimoto, K. Inomata, Phys. Rev. B, 70, 17240-1 (2004).

    下載圖示 校內:2008-06-14公開
    校外:2010-06-14公開
    QR CODE