| 研究生: |
陳珮寧 Chen, Pei-Ning |
|---|---|
| 論文名稱: |
雙原子鈉分子的532nm固態雷射誘導螢光光譜 Laser-Induced Fluorescence of Na2 Excited by the 532 nm Diode-Pumped Solid State Laser |
| 指導教授: |
蔡錦俊
Tsai, Chin-Chun 黃守仁 Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 雷射誘導螢光光譜 |
| 外文關鍵詞: | Laser-Induced Fluorescence |
| 相關次數: | 點閱:67 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗藉由雷射誘導螢光光譜(Laser Induced Fluorescence, LIF)的方法,探討波長為532 nm的半導體雷射對氣態同核雙原子鈉分子電子能態可能的躍遷。雷射激發與螢光躍遷能態方程式如下:
Laser: B1u(v’,J’) ← X1g+ (v1”,J1”) + h1
Monochromator: B1u (v’,J’) →X1g+ (v2”,J2”) + h2
躍遷所產生的雷射誘導螢光h2經透鏡聚焦匯入光纖後,透過雙光柵高解析單光儀及光電倍增管等偵測各躍遷頻譜訊號,以分析兩電子能態間的相對與絕對的能階。
實驗中所使用的校正燈源分別為汞燈,以及填充氬氣的鎂中空陰極管。鎂中空陰極管加一高電壓後可產生氬及鎂的原子躍遷譜線。汞、氬、鎂的標準原子譜線是以NIST網站公佈的參考資料為標準,以此做譜線波長的比對校正。實驗數據配合1978年Kusch和Hessel以及2005年Camacho等人所發表X1g+ 及B1u已知的分子常數,再配合選擇定律、躍遷機率等分子光譜特性,透過擬合方式比對光譜的振轉能階躍遷。實驗共偵測到112個躍遷訊號,包含四個螢光系列,分別由B1u電子態振轉能階為(v’,J’)=(3,98)、(4,63)、(7,13)、(7,106)回到X1g+ 電子態的螢光系列。
The transitions between the electronic states B1uand X1g+ in gas phase of sodium dimer Na2 was observed by the laser-induced fluorescence spectroscopy (LIF). The Na2 molecule was pumped from the thermal populated X1g+ state to the excited B1u state by a 532 nm diode-pumped solid state laser. The LIF from B1u state to X1g+ state was collected and detected by a high-resolution double-grating monochromator system through a fiber module. The transitions can be described as:
Laser: B1u(v’,J’) ← X1g+ (v1”,J1”) + h1
Monochromator: B1u (v’,J’) →X1g+ (v2”,J2”) + h2
The emission spectra from a mercury lamp and a magnesium hollow cathode lamp filled with argon were used as wavelength calibration. The line positions of atomic transitions of mercury, magnesium and argon were compared with the standard published on the website of National Institute of Standards and Technology.
The transition frequency of the fluorescence series corresponding to the laser excitation were compared with the initially calculation using the molecular constants from Kusch and Hessel in 1987 and recent work by Camacho et al. in 2005. We have observed 112 transitions from B1u state to X1g+ state belonging to four fluorescence series, (v’,J’)=(3,98),(4,63),(7,13), and (7,106) of B1u state back to the X1g+ state. The measured line positions and relative fluorescence intensities match well with the calculated from the molecular constants and Franck-Condon factors.
1 R. Teets, R. Feinberg, T. W. Hänsch, and A. L. Schawlow, Phys. Rev. Lett. 37, 683 (1976).
2 K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. C. Stwalley, and W. T. Zemke, J. Chem. Phys. 78, 3599 (1983).
3 G. Herzberg, Molecular Spectra and Molecular Structure:Vol. 1, Spectra of Diatomic Molecules (Robert E. Krieger Publishing Co. , Malabar, Florida, 1989).
4 P. Kusch and M. M. Hessel, J. Chem.Phys. 68, 2591 (1978).
5 R. F. Barrow, J. Verges, C. Effantin, K. Hussein, and J. D'incan, Chem. Phys. Lett. 104, 179 (1984).
6 O. Babaky and K. Hussein, Can. J. Phys. 67, 912 (1989).
7 W. T. Zemke and W. C. Stwalley, J. Chem. Phys. 100, 2661 (1994).
8 K. M. Jones, et al., Phys. Rev. A 54, R1006 (1996).
9 G. W. King and J. H. van Vleck, Phys. Rev. 55, 1165 (1939).
10 R. S. Mulliken, Phys. Rev. 120, 1674 (1960).
11 J. Keller and J. Weiner, Phys. Rev. A 29, 2943 (1984).
12 H. J. Vedder, G. K. Chawla, and R. W. Field, Chem. Phys. Lett. 111, 303 (1984).
13 W. Demtröder, M. McClintock, and R. N. Zare, J. Chem. Phys. 51,, 5495 (1969).
14 J. J. Camacho, J. M. L. Poyato, A. M. Polo, and A. Pardo, J. Quant. Spectrosc. Radiat. Transfer 56, 353 (1996).
15 J. J. Camacho, A. Pardo, A. M. Polo, D. Reyman, and J. M. L. Poyato, J. Mol. Spectrosc. 191, 248 (1998).
16 A. Pardo, J. Mol. Spectrosc. 309, 55 (1999).
17 J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, Spectrochim. Acta A 56, 769 (2000).
18 J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, J. Quant. Spectrosc. Radiat. Transfer 65, 729 (2000).
19 A. Pardo, J. Mol. Spectrosc. 199, 225 (2000).
20 J. J. Camacho, A. Pardo, and J. M. L. Poyato, J. Phys. B: At. Mol. Opt. Phys. 38, 1935 (2005).
21 G. Gerber and R. Möller, Phys. Rev. Lett. 55, 814 (1985).
22 H. Richter, H. Knöckel, and E. Tiemann, Chem. Phys. 157, 217 (1991).
23 E. Tiemann, Atoms, Molecules and Clusters 5, 77 (1987).
24 M. M. Hessel, E. W. Smith, and R. E. Drullinger, Phys. Rev. Lett. 33, 1251 (1974).
25 W. Demtröder, W. Stetzenbach, M. Stock, and J. Witt, J. Mol. Spectrosc. 61, 382 (1976).
26 S. Magnier, P. Millié, O. Dulieu, and F. Masnou-Seeuws, J. Chem. Phys. 98, 7113 (1993).
27 J. I. Steinfeld, Molecules and Rariation:An Introduction to Modern Molecular Spectroscopy, 1985).
28 R. Rydberg, Z. Phys. A 73 (1931).
29 O. Klein, Z. Phys. A 76 (1932).
30 A. L. G. Rees, Proc. R. Soc. London 59, 998 (1947).
31 H. Hönl and F. London, Z. Physik 33, 803 (1925).
32 丁勝懋, 雷射工程導論 (中央圖書出版社, 1993).
33 A. S. King, J. Astrophys. 28 (1908).
34 G. M. Grover, T. P. Cotter, and G. F. Erickson, J. Appl. Phys. 35, 1990 (1964).
35 C. R. Vidal and J. Cooper, J. Appl. Phys. 40, 3370 (1969).
36 C. R. Vidal and F. B. Haller, Rev. Sci. Instr. 42, 1779 (1971).
37 C. R. Vidal and M. M. Hessel, J. Appl. Phys. 43, 2776 (1972).
38 C. R. Vidal, J. Appl. Phys. 44, 2225 (1973).
39 J.T.Bahns, The University of Iowa, 1983.
40 http://physics.nist.gov/cgi-bin/ASD/lines1.pl.
41 吳惠雯, 碩士論文, 2003.
42 鄭君平, Private communication, 成功大學, 2005.
43 B. Edlén, Metrologia 2, 71 (1966).
44 R.-Y. Chang, C.-C. Tsai, T.-J. Whang, and C.-P. Cheng , J. Chem. Phys. 123, 224303 (2005).
45 T.-J. Whang, H. Wang, A. M. Lyyra, L. Li, and W. C. Stwalley, J. Mol. Spectrosc. 145, 112 (1991).
46 C.-C. Tsai, J. T. Bahns, and W. C. Stwalley, J. Chem. Phys. 99, 7417 (1991).
47 C.-C. Tsai, R.-Y. Chang, H.-W. Wu, and T.-J. Whang, J. Mol. Spectrosc. 232, 66 (2005).