簡易檢索 / 詳目顯示

研究生: 張家隆
Chang, Chia-Lung
論文名稱: 以陽極氧化鋁模板製備氧化鎢及金屬鎳奈米線及其場發射特性之研究
Fabrication and Characterization of Tungsten Oxide and Nickel Nanowires self-synthesized with Anodic Aluminum Oxide Template
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: 場發射場發射子氧化鎢陽極氧化鋁
外文關鍵詞: field emission, AAO, WOx, Ni, field emitter
相關次數: 點閱:72下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在1991年時,Iijima以電弧放電法製備出奈米碳管之後,奈米科技越來越受到重視。奈米技術對於半導體以及光電產業帶來了重大的影響,尤其是一維奈米材料的場發射特性應用最受到重視,其場發射特性可用來製作場發射顯示器(FED)。除此之外,奈米線的奈米級尖端非常適合用來當作STM、AFM的探針。
    在研究中我們使用陽極氧化鋁(AAO)來成長氧化鎢奈米線,利用氧化鋁來控制氧化鎢奈米線的密度,進一步降低電場屏障效應所帶來的影響,成功的提升氧化鎢奈米線的場發射特性。藉由濺鍍沉積純鎢薄膜於孔洞大小100 nm以及200 nm孔徑AAO表面,並且將AAO孔洞填滿,之後在氮氣氛圍下進行650oC ~ 800oC、30分鐘的熱退火。由SEM可以看出在800oC時具有最佳長寬比的奈米線,經由場發射量測結果可以發現,在800oC時,以100 nm以及200 nm孔徑 AAO所成長的氧化鎢奈米線其啟動電場分別為1.7 V/m以及2.3 V/m @J=1A,並可以發現由於100 nm 孔徑AAO具有比200 nm孔徑 AAO更適合的奈米線密度,所以具備有更好的場發射特性。
    此外我們也利用AAO高密度且孔洞均勻規則的特性,以電鍍法可以以低成本的方式製備大面積的鎳奈米線,並利用AAO作為Sapcer,且以100 nm以及200 nm孔徑AAO來研究在不同長度之下其場發射特性的變化,結果顯示以兩種尺寸所成長的鎳奈米線,在長度逐漸增加的情況下,其啟動電場呈現先下降後上升的情況。這表示在較低長度之下,增加奈米線的長度有助於提升其場發射特性,但是到了一定長度之後,此時繼續的增加奈米線的長度將使得電場屏障效應增加,導致場發射特性隨著長度的增加而衰減。
    此外也利用NaOH溶液蝕刻去除AAO,結果顯示,在移除AAO後的場發射特性有很明顯的提升。在電鍍100 nm直徑鎳奈米線一小時的條件下,移除前啟動電場為6.3 V/m @J=1A/cm2,而其場發射電流密度在20V/m外加電場強度時僅約65A/cm2,但是移除AAO之後,其啟動電場可以降至4.8 V/m @ J=1A/cm2,而且其場發射電流密度在8 V/m外加電場強度時將可大幅提升至200 uA以上。

    Nanoscale materials such as nanotubes, nanowires, nanobelts, and nanorods, etc., have attracted lots of attention since the carbon nanotube was fabricated by arc discharge method in 1991. These nanoscale materials, especially, one dimension nanowires, have much potential in field emission applications such as field emission display (FED), single-electron transistors (SETs) and so on.
    In this study, the field-emission properties of nanowires produced using anodic porous anodic aluminum oxide (AAO) templates are reported. Tungsten oxide (WOx) nanowires for field emitters based on a pore-space confinement of AAO templates is reported. The WOx nanowires were grown inside the pores of AAO templates by a simple thermal annealing process of sputter-deposited W films. The lower field-screening effect of the WOx nanowires is achieved because the density of WOx nanowires could be controlled by using AAO templates. Experimental results show that good field emission characteristics with an enhancement factor of around 3358, and a turn-on field intensity of 1.7 V/m were obtained at 800oC.
    In addition, the Ni nanowires were fabricated in AAO templates by electrodeposition method. The field emission characteristics of the Ni nanowires with different length were grown in different diameter (100 and 200 nm) of AAO templates. The field emission characteristics of the Ni nanowires are discussed with different diameter and different length. The results show that the best field emission characteristic is measured with an enhancement factor of around 2118, and a turn-on field intensity of 6.3 V/m were obtained.

    中文摘要 i 英文摘要 iii 致謝 v 目錄 vi 表目錄 ix 圖目錄 x 第一章 緒論 1 1-1 前言 1 1-2 奈米碳管 2 1-3 鎢的特性 4 1-4 鎳的特性 6 1-5 場發射理論(field emission theory) 6 1-6 電場屏障效應(field-screening effect) 9 1-7 二、三極場發射結構 12 1-8 具方向性之奈米線成長及定位技術 15 1-9 研究動機 19 第二章 陽極氧化鋁製備及實驗儀器介紹 21 2-1 陽極氧化鋁膜製備介紹 21 2-2 實驗設備 26 第三章 以陽極氧化鋁製備氧化鎢奈米線 31 3-1 前言 31 3-2 實驗流程 31 3-2-1 於矽基板上成長氧化鎢奈米線 31 3-2-2 以AAO (anodic aluminum oxide)成長氧化鎢奈米線 36 3-3 SEM分析 37 3-3-1 SEM分析-於矽基板上成長氧化鎢奈米線 37 3-3-2 SEM分析-以AAO成長氧化鎢奈米線 39 3-4 XRD及TEM分析-於矽基板上成長氧化鎢奈米線 44 3-5 場發射特性量測及分析 46 3-6 本章結論 55 第四章 以AAO (anodic aluminum oxide)製備金屬鎳奈米線 56 4-1 前言 56 4-2 實驗流程 56 4-3 SEM分析 60 4-4 EDS分析 63 4-5 XRD 分析 63 4-6 場發射特性量測及分析 64 4-7 本章結論 72 第五章 結論及未來工作 73 5-1 結論 73 5-2 未來工作 74 參考文獻 76 作者簡歷 82

    [1] R. H. Fowler, and L. W. Nordheim,“Electron emission in intense electric felds”, Proc. R. Soc. London Ser. A 119, 173 (1928)
    [2] C. A. Spindt,“A Thin Film-Emission Cathod”, J. Appl. Phys. 39 3504 (1968)
    [3] Meyer, et al.,“Recent Development On Microtips` Display At LETI”, Technical Digest of IVMC 91, 6 (1991)
    [4] S. Iijima,“Helical microtubules of graphitic carbon”, Nature 354, 56 (1991)
    [5] H.Takikawa, O. Kusano, and T. Sakakibara,“Graphite cathod spot produces carbon nanotube in arc discharge”, J. Phy. D: Appl. Phys. 32, 2433 (1999)
    [6] A. A. Puretzky, D. B. Geohegan, X. Fan, and S. J. Pennycook,“In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization”, Appl. Phys. Lett. 76, 182, (2000)
    [7] G. Che, B. B. Lakshmi, C. R. Martin, and E. R. Fisher,“Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method”, Chem. Mater. 10, 206 (1998)
    [8] S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shih,“Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis”, Appl. Phys. Lett. 74, 3462 (1999)
    [9] P. A. Cox, “Transition Metal Oxides”, Clarendon Press, Oxford (1995)
    [10] A. Souza-Filho, V. Freire, J. Sasaki, J. Mendes-Filho, J. Juliao, and U. Gomes,“Coexistence of triclinic and monoclinic phases in WO3 ceramics”, J. Raman Spect., 31, 451 (2000)
    [11] C. H. Chen, S. J. Wang, R. M. Ko and Y. C. Kuo,“Self-Synthesis of High Density and Well Crystalline Tungsten Oxide Nanowires on Tungsten Films”, EDMS (2005)
    [12] S. J. Wang, C. H. Chen, R. M. Ko, and Y. C. Kuo,“The Influence of Oxygen Concentration in the Sputtering Gas on the Self-synthesis of Tungsten Oxide Nanowires on Sputter-deposited Tungsten Films”, International Conference on Solid State Devices and Materials, 1018 (2005)
    [13] S. J. Wang, C. H. Chen, S. C. Chang, and K. M. Uang, C. P. Juan, and H. C. Cheng,“Growth and characterization of tungsten carbide nanowires by thermal annealing of sputter-deposited WCx films”, Appl. Phys. Lett. 85, 2358 (2004)
    [14] S. J. Wang, C. H. Chen, S. C. Chang, C. H. Wong, K. M. Uang, T. M. Chen, R. M. Ko, and B. W. Liou,“On the thermal annealing conditions for self-synthesis of tungsten carbide nanowires from WCx films”, Nanotechnology 16, 273 (2005)
    [15] G. Gu, B. Zheng, W. Q. Han, S. Roth, and J. Liu,“Tungsten Oxide Nanowires on Tungsten Substrates”, Nano Lett. 2, 849 (2002)
    [16] K. Liu, D. T. Foord, and L. Scipioni,“Easy growth of undoped and doped tungsten oxide nanowires with high purity and orientation”, Nanotechnology 16, 10 (2005)
    [17] M. H. Cho, et al,“Evolution of tungsten-oxide whiskers synthesized by a rapid thermal-annealing treatment”, J. Vac. Sci. Technol. B 22, 1084 (2004)
    [18] D. Al Mawlawi, N. Coombs, and M. Moskovits,“Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size”, J. Appl. Phys. 70, 4421 (1991)
    [19] F. Li, R. M. Metzger, and W. D. Doyle,“Influence of particle size on the magnetic viscosity and activation volume of α-Fe nanowires in alumite films”, IEEE Trans. Magn. 33, 3715 (1997)
    [20] S. Manalis, K. Babcock, J. Massie, V. Elings, and M. Dugas,“Submicron studies of recording media using thin-film magnetic scanning probes”, Appl. Phys. Lett. 66, 2585 (1995)
    [21] S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fisher,“Single- domain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage”, J. Appl. Phys. 76, 6673 (1994)
    [22] Y. Chen, S. Patel, Y. Ye, D. T. Shaw, and L. Guo,“Field emission from aligned high-density graphitic nanofibers”, Appl. Phys. Lett. 73, 2119 (1998)
    [23] W. A. de Heer, A. Chatelain, and D. Ugrate,“A Carbon Nanotube Field-Emission Electron Source”, Science 270, 1179 (1995)
    [24] Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss, “Field emission from nanotube bundle emitters at low fields”, Appl. Phys. Lett. 70, 3308 (1997)
    [25] P. G. Collins, and A. Zettl,“Unique characteristics of cold cathode carbon-nanotube-matrix field emitters”, Phys. Rev. B 55, 9391 (1997)
    [26] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yua,“Morphological effects on the field emission of ZnO nanorod arrays”, Appl. Phys. Lett. 86, 203115 (2005)
    [27] T. Utsumi,“Vacuum microelectronics: what's new and exciting”, IEEE Trans. Electron Dev. 38, 2276 (1991)
    [28] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern,“Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett. 76, 2071 (2000)
    [29] J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han,“Study of the field-screening effect of highly ordered carbon nanotube arrays”, Appl. Phys. Lett. 80, 2392 (2002)
    [30] E. Joselevich, and C. M. Lieber,“Vectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes”, Nano Lett. 2, 1137 (2002)
    [31] Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, and H. Daia,“Electric-field-directed growth of aligned single-walled carbon nanotubes”, Appl. Phys. Lett. 79, 3155 (2001)
    [32] A. Ural, Y. Li, and H. Dai,“Electric-field-aligned growth of single-walled carbon nanotubes on surfaces”, Appl. Phys. Lett. 81, 3464 (2002)
    [33] D. L. Fan, F. Q. Zhu, R. C. Cammarata, and C. L. Chien,“Manipulation of nanowires in suspension by ac electric fields”, Appl. Phys. Lett. 85, 4175 (2004)
    [34] O. Englander, D. Christensen, J. Kim, L. Lin, and S. J. S. Morris,“Electric-Field Assisted Growth and Self-Assembly of Intrinsic Silicon Nanowires”, Nano Lett. 5, 705 (2005)
    [35] Y. Cao, W. Liu, J. Sun, Y. Han, J. Zhang,S. Liu, H. Sun, and J. Guo,“A technique for controlling the alignment of silver nanowires with an electric field”, Nanotechnology 17, 2378 (2006)
    [36] S. W. Lee, M. C. Jeong, and J. M. Myoung, G. S. Chae, and I. J. Chung,“Magnetic alignment of ZnO nanowires for optoelectronic device applications”, Appl. Phys. Lett. 90, 133115 (2007)
    [37] K. Fukutani, K. Tanji, T. Motoi, and T. Den,“Ultrahigh Pore Density Nanoporous Films Produced by the Phase Separation of Eutectic Al-Si for Template-Assisted Growth of Nanowire Array”, Adv. Mate. 16, 1456 (2004)
    [38] K. Nielsch, F. Müller, A.-P. Li, and U. Gösele, “Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition”, Adv. Mate. 12, 582 (2000)
    [39] Y. Li, D. Xu, Q. Zhang, D. Chen, F. Huang, Y. Xu, G. Guo, and Z. Gu, “Preparation of Cadmium Sulfide Nanowire Arrays in Anodic Aluminum Oxide Templates”, Chem. Matter. 11, 3433 (1999)
    [40] D. Routkevitch, T. Bigioni, M. Moskovits, and J. M. Xu,“Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates”, J. Phys. Chem. 100, 14037 (1996)
    [41] C. J. Yang, S. M. Wang, S. W. Liang, Y. H. Chang, C. Chen, and J. M. Shieh,“Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition”, Appl. Phys. Lett. 90, 033104 (2007)
    [42] G. Meng, A. Cao, J. Y. Cheng, A. Vijayaraghavan, Y. J. Jung, M. Shima, and P. M. Ajayan,“Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template”, J. Appl. Phys. 97, 064303 (2007)
    [43] J. Y. Miao, Y. Cai, Y. F. Chan, P. Sheng, and N. Wang,“A Novel Carbon Nanotube Structure Formed in Ultra-Long Nanochannels of Anodic Aluminum Oxide Templates”, J. Phys. Chem. B 110, 2080 (2006)
    [44] J. S. Lee, G. H. Gu, H. Kim, K. S. Jeong, J. Bae, and J. S. Suh,“Growth of Carbon Nanotubes on Anodic Aluminum Oxide Templates:Fabrication of a Tube-in-Tube and Linearly Joined Tube”, Chem. Mater. 13, 2387 (2001)
    [45] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura,“Highly ordered nanochannel-array architecture in anodic alumina”, Appl. Phys. Lett. 71, 2770 (1997)
    [46] V. Lehman, and H. Foll,“Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon”, J. Electrochem. Soc. 137, 653 (1990)
    [47] F. Li, L. Zhang, and R. M. Metzger,“On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide”, Chem. Mater. 10, 2470 (1998)
    [48] G. E. Thompson, “Porous anodic alumina: fabrication characterization and applications",Thin Solid Film 297, 192 (1997)
    [49] C. Y. Liu, A. Datta, and Y. L. Wang,“Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces”, Appl. Phys. Lett. 78, 120 (2001)
    [50] J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gösele,“Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp”, J. Vac. Sci. Technol. B 21(2) (2003)
    [51] Z. Sun, and H. K. Kim,“Comparison of isotropic and anisotropic sensor effects in polymer lightguides”, Appl. Phys. Lett. 81, 18 (2002)
    [52] 鄭慶誠,“氮化鋱金屬閘極與氧化鉿high-k絕緣材料場效電晶體之研製”, 國立成功大學微電子工程研究所碩士論文, (2005)

    下載圖示 校內:2017-08-27公開
    校外:2019-08-27公開
    QR CODE