| 研究生: |
葉平堯 Ye, Ping-Yao |
|---|---|
| 論文名稱: |
還原碴再利用於膠結材料水化特性之研究 Hydration Characteristics of Ladle Furnace Slag Reutilization for Bonding Materials |
| 指導教授: |
陳昭旭
Chen, Chao-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 還原碴 、膠結材料 、鹼活化反應 、體積穩定性 |
| 外文關鍵詞: | LFS, Bonding Materials, Alkali Activation, Volume Stability |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電弧爐煉鋼還原碴係電弧爐煉鋼過程中還原期所產生的工業副產品,早期多被認定為事業廢棄物。然而,由於還原碴的成分組成和卜特蘭水泥以及常用的卜作嵐材料(飛灰、水淬爐石粉等)相當接近,具有作為卜作嵐材料之潛力,故現今多朝資源化再利用作為混凝土材料的方向進行研究,而非單純視為廢棄物進行處置。
為了達到增加還原碴去化量和減少水泥用量之目的,本研究中將還原碴以1.作為卜作嵐材料替代水泥、2.作為鹼活化劑搭配卜作嵐材料-摻料A製備成鹼活化膠結材料和3.以鹼活化膠結材料的形式替代水泥等三種方式應用於砂漿試體的膠結材料。所製備的砂漿試體則透過抗壓、體積穩定性、凝結時間和微觀分析等試驗項目,探討還原碴細度變化、還原碴用量和不同的膠結材料應用方式,對砂漿試體的工程特性影響及水化作用的特性差異,評估還原碴作為膠結材料的最佳應用方式和最佳配比。
從研究結果中可得知,無論以何種方式作為砂漿試體的膠結材料,隨還原碴用量增加,對強度發展、體積穩定性和凝結時間等都有負面影響,還原碴用量建議以膠結材料重量百分比的25 %為上限。而還原碴的細度變化則對強度發展趨勢有較大的影響。在三種膠結材料的應用方式中,將還原碴以鹼活化膠結材料的形式替代部份水泥作為膠結材料,替代量可達70 %,且具有較佳的體積穩定性和強度發展表現,為極具潛力的膠結材料應用形式。
Because it’s components are fairly similar to those of Ordinary Portland cement (OPC) and commonly used pozzolanic materials, which are ground granulated blast furnace slag and fly ash, Ladle furnace slag (LFS), a by-product of steel-refining process, has the potential to be the bonding material or admixture for concrete. Therefore, instead of simply seeing it as a waste, recent studies focus mainly on recycling and reuse. With the aim of eliminating LFS and cutting down cement consumption, three different types of mixture will be used in this study as bonding materials for mortar specimens: (1) slag cement (SC) bonding materials, produced by replacing part of cement mortar with LFS, (2) alkali-activated slag (AAS) bonding materials, produced by incorporating LFS with pozzolanic materials-admixture A(PA), and (3) OPCAAS mixture bonding materials, produced by replacing part of cement with AAS. Making use of micro analysis and the engineering properties test of mortar specimens, this study discusses LFS’s change of fineness, LFS consumption and the application of different bonding materials, and how the three different mixture mentioned above affect hydration and the engineering properties of mortar specimens, to identify the perfect way and ratio to use LFS as a bonding material.No matter which type of bonding material is used, according to the result, excessive LFS negatively affects engineering properties, such as the strength development, volume stability and setting time of mortar. The advised maximum weight percentage of LFS is 25% of bonding material, and LFS’s change of fineness has no significant effect to engineering properties. Of those three different types of mixture, AAS, if well-proportioned, can substitute up to 70% cement, and it has better volume stability and strength development performance. So, OPCAAS, prodcuced by incorporating AAS and cement, is an enormously potential bonding material.
1. Atis, C.D., C. Bilim, O. Celik & O. Karahan (2009), "Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar." Construction and Building Materials 23(1): 548-555.
2. Bakharev, T., G.T. Sanjayan & Y.B. Cheng (2002), "Sulfate attack on alkali-activated slag concrete." Cement and concrete research 32(2): 211-216.
3. Bentz, D.P., M.R. Geiher & K.K. Hansen (2001), "Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars." Cement and concrete research 31(7): 1075-1085.
4. Bissonnette, B., P. Pierre & M. Pigeon (1999), "Influence of key parameters on drying shrinkage of cementitious materials." Cement and concrete research 29(10): 1655-1662.
5. Buchwald, A & M. Schulz (2005). "Alkali-activated binders by use of industrial by-products." Cement and concrete research 35(5): 968-973.
6. Cetin, C., S.T. Erdogan & M. Tokyay (2015). "Effect of particle size and slag content on the early hydration of interground blended cements." Cement and concrete research 67: 968-973.
7. Chen, W. and H. Brouwers (2012). "Hydration of mineral shrinkage-compensating admixture for concrete: An experimental and numerical study." Construction and Building Materials 26(1): 670-676.
8. Chen, W., H.J.H. Brouewrs & Z.H. Shui (2007). "Three-dimensional computer modeling of slag cement hydration." Journal of Materials Science 42(23): 9595-9610.
9. Chindaprasirt, P., S. Homwuttiwong & S. Sirivivatuanon (2004). "Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar." Cement and concrete research 34(7): 1087-1092.
10. Collepardi, M., A. Borsoi, S. Collepardi & O.J.J. Olagot (2005). "Effects of shrinkage reducing admixture in shrinkage compensating concrete under non-wet curing conditions."Cement and concrete composites 27(6): 704-708.
11. Collins, F & J. Sanjayan (1999)." Workability and mechanical properties of alkali activated slag concrete." Cement and concrete research 29(3): 455-458.
12. Herrero, T., I.J. Vegas, A. Santamaria, J.T. San-Jose & M. Skarf (2016). "Effect of high-alumina ladle furnace slag as cement substitution in masonry mortars." Construction and Building Materials 123: 404-413.
13. Hogan, F & J. Meusel (1981). "Evaluation for durability and strength development of a ground granulated blast furnace slag." Cement, Concrete and Aggregates 3(1): 40-52.
14. Huanhai, Z., W. Xuequan, X. Zhougzi & T. Miugshu (1993). "Kinetic study on hydration of alkali-activated slag." Cement and concrete research 23(6): 1253-1258.
15. Jennings, H.M (2000). "A model for the microstructure of calcium silicate hydrate in cement paste." Cement and concrete research 30(1): 101-116.
16. Jeong, Y., H. Park, Y. Jun, J.H. Jeong & J.E. Oh (2016) "Influence of slag characteristics on strength development and reaction products in a Cao-activated slag system." Cement and Concrete Composites 72: 155-167
17. Juenger, M.C.G & H.M. Jennings (2002). "Examining the relationship between the microstructure of calcium silicate hydrate and drying shrinkage of cement pastes." Cement and concrete research 32(2): 289-296.
18. Krizan, D & B. Zivanovic (2002). "Effects of dosage and modulus of water glass on early hydration of alkali–slag cements." Cement and concrete research 32(8): 1181-1188.
19. Kuhlmann, K., H.G. Ellerbrock & S. Sprung (1985). "Particle size distribution and properties of cement. Part I: strength of Portland cement. "ZKG International Cement-Lime-Gypsum, Edition B 38(4).
20. Kuo, W.T & T.C. Hou (2014). "Engineering properties of alkali-activated binders by use of desulfurization slag and GGBFS." Construction and Building Materials 66: 229-234.
21. Lawrence, C. (1995). "Mortar expansions due to delayed ettringite formation. Effects of curing period and temperature." Cement and concrete research 25(4): 903-914.
22. Lim, Y.M., H.C. Wu & C.V. Li (1999). "Development of flexural composite properties and dry shrinkage behavior of high-performance fiber reinforced cementitious composites at early ages." Materials Journal 96(1): 20-26.
23. Manso, J.M., V.O. Lopez, J.A. Polance & J. Setien (2013). "The use of ladle furnace slag in soil stabilization." Construction and Building Materials 40: 126-134.
24. Manso, J.M., A. Rodriguez, A. Aragon & J.J. Gonzalez (2011). "The durability of masonry mortars made with ladle furnace slag." Construction and Building Materials 25(8): 3508-3519.
25. Meusel, J & J. Rose (1983). "Production of granulated blast furnace slag at sparrows point, and the workability and strength potential of concrete incorporating the slag." Special Publication 79: 867-890.
26. Murmu, M & S.P. Singh (2014). "Hydration products, morphology and microstructure of activated slag cement." International Journal of Concrete Structures and Materials 8(1): 61-68.
27. Neto, A.A.M., M.A. Cincotto & W. Repette (2008). "Drying and autogenous shrinkage of pastes and mortars with activated slag cement." Cement and concrete research 38(4): 565-574.
28. Oriol, M & J. Pera (1995). "Pozzolanic activity of metakaolin under microwave treatment." Cement and concrete research 25(2): 265-270.
29. Palomo, A., M.W Grutzeck & M.T. Blanco (1999). "Alkali-activated fly ashes: a cement for the future." Cement and concrete research 29(8): 1323-1329.
30. Papayianni, I & E. Anastasiou (2012). "Effect of granulometry on cementitious properties of ladle furnace slag." Cement and concrete composites 34(3): 400-407.
31. Papayianni, I., G. Tsohos, N. Oikonomou & P. Mavria (2005). "Influence of superplasticizer type and mix design parameters on the performance of them in concrete mixtures." Cement and concrete composites 27(2): 217-222.
32. Ramachandran, V.S. (1996). "Concrete admixtures handbook: properties, science and technology." United States: William Andrew Publisher.
33. Ravikumar, D & N. Neithalath (2012). "Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH." Cement and concrete composites 34(7): 809-818.
34. Sheen, Y.N., D.H. Le & T.H. Sun (2015). "Greener self-compacting concrete using stainless steel reducing slag." Construction and Building Materials 82: 341-350.
35. Shi, C (1996). "Strength, pore structure and permeability of alkali-activated slag mortars." Cement and concrete research 26(12): 1789-1799.
36. Shi, C & R.L. Day (1995). "A calorimetric study of early hydration of alkali-slag cements." Cement and concrete research 25(6): 1333-1346.
37. Shi, C & R.L. Day (1996). "Some factors affecting early hydration of alkali-slag cements." Cement and concrete research 26(3): 439-447.
38. Song, S & H.M. Jennings (1999). "Pore solution chemistry of alkali-activated ground granulated blast-furnace slag." Cement and concrete research 29(2): 159-170.
39. Stutzman, P.E (2001). "Scanning electron microscopy in concrete petrography." United States. National Institute of Standards and Technology Publisher.
40. Tsivilis, S., S. Tsimas, A. Benetatou & E. Haniotakis (1990). "Study on the contribution of the fineness on cement strength." ZKG international 43(1): 26-29.
41. Tongsheng, Z., Y. Qijun, W. Jiangxiong & Z. Pingping (2011), "Effects of size fraction on composition and fundamental properties of Portland cement." Construction and Building Materials 25(7): 3038-3043.
42. Vilaplana, A.S.d.G., V.J Ferreira, A.M.L. Sabiron, A.A. Uson, C.L. Gonzalez C.B. Conde & G. Ferreria (2015). "Utilization of Ladle Furnace slag from a steelwork for laboratory scale production of Portland cement." Construction and Building Materials 94: 837-843.
43. Virgalitte, S.J., M.D. Luther, J.H. Rose & B. Mather (1995). "Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete(American Concrete Institute ACI Report 233R-95)." United States : ACI Publisher.
44. Yuan, X.H., W. Chen, Z.A. Lu & H. Chen (2014), "Shrinkage compensation of alkali-activated slag concrete and microstructural analysis." Construction and Building Materials 66: 422-428.
45. Young, J.F., S. Mindess & D. David (2003). "Concrete." United States: Prentice Hall Publisher.
46. Zhang, M.H & V.M. Malhotra (1996), "High-performance concrete incorporating rice husk ash as a supplementary cementing material." ACI Materials Journal 93(6): 629-636.
47. 王小剛、史才軍、何富強、元強、王德輝、黃勇、李慶齡(2013),氯離子结合及其對水泥基材料微觀結構的影響,硅酸鹽学报,第四十一卷,第二期,第187~198頁。
48. 江慶陞(1981),爐石的資源化,技術與訓練,第六卷,第九期。
49. 行政院公共工程委員會(2001),公共工程高爐石混凝土使用手冊。
50. 經濟部工業局(2001),電弧爐煉鋼還原碴資源化應用技術手冊。
51. 吳明富(2013),還原碴-高爐石作為混合膠結材料之應用,國立中央大學土木工程研究所碩士學位論文。
52. 李宜桃(2003),鹼活化還原碴漿體收縮及抑制方法之研究, 國立中央大學土木工程研究所碩士學位論文。
53. 沈永年(1990),添加防水摻料對水泥砂漿/漿體巨微觀性質影響之研究,技術學刊,第五卷,第二期。
54. 林世欽(2007),台灣地區水泥製造業 NOX 與 CO2 排放特性及 DeNOX 設施成效探討, 中央大學環境工程研究所碩士學位論文。
55. 林庭亦(2003),電弧爐還原渣再生應用於高性能混凝土性質之研究,國立台灣科技大學營健工程系碩士學位論文。
56. 張文賓(2016),藥劑配比對不同水膠比鹼活化爐碴膠結材料性質之影響,國立中央大學土木工程研究所碩士學位論文。
57. 張復盛,許伯良(2014),他山之石 國外爐石/碴之應用,中國鑛冶工程學會會刊,第227期,第43~48頁。
58. 郭文田,翁明偉(2009),利用脫硫渣與水淬爐石產製無卜特蘭水泥控制性低強度材料,中正嶺學報,第三十八卷,第一期。
59. 陳信洲 (1994),水泥混凝土添加爐石提高早期強度策略之研究,國立中央大學土木工程研究所碩士學位論文。
60. 陳清泉、陳振川(1987),爐石為水泥熟料與填充料對混凝土特性影響之文獻及國外現況調查研究." 財團法人台灣營建研究中心。
61. 陳瑞鈴、黃然(2010),鹼活化爐石混凝土應用於營建材料之研究,內政部建築研究所。
62. 傅國柱(2002),還原碴取代部分水泥之研究,國立中央大學土木工程研究所碩士學位論文。
63. 曾仕文(2013),電弧爐還原碴應用於控制性低強度材料及其安定化成效評估研究,國立中央大學土木工程研究所碩士學位論文。
64. 曾偉林(2001),鹼活化爐石粉基質材料製程與基本特性探討,國立台灣海洋大學河海工程學系碩士學位論文。
65. 黃文星、付建勛、林偉凱(2011),台灣金屬資源再生技術之現況與展望, 科學發展月刊,第457期,第92~96頁。
66. 黃兆龍(1985),固態廢料處理研究方案之二-爐石在混凝土的應用,財團法人台灣營建研究中心。
67. 黃兆龍,洪文方(1986),普通水泥中添加高爐熟料之影響,高爐石與飛灰資源在工程上應用研討會論文集,第125~142頁。
68. 黃偉倫(2015), 爐碴在水泥基質材料中的膨脹行為及安定化方法初探, 中原大學土木工程研究所碩士學位論文。
69. 楊貫一(1992),爐石資源化-中鋼公司爐石應用的過去與未來,技術與訓練,第十七卷,第一期,第31~46頁。
70. 詹穎雯(2000),飛灰爐石混凝土之原理性質與應用,飛灰爐石於混凝土之合理運用研討會論文集: 第1~16頁。
71. 蒲心誠、楊長輝(1994),高強鹼爐渣(JK)流態混凝土研究,混凝土 ,第18~30頁。
72. 劉國忠(2001),煉鋼爐渣之資源化技術與未來推展方向,環保月刊,第四期十月號,第117~118頁。
73. 蔡和生(2016),鹼活化還原碴砂漿之工程與環境特性研究 國立成功大學環境工程研究所碩士學位論文。
74. 蕭遠智(2002), 鹼活化電弧爐還原碴之水化反應特性, 國立中央大學土木工程研究所碩士學位論文。
75. 羅康維(2014), 還原碴、 水洗灰與泥渣類廢棄物共同燒製水泥之水化特性研究,宜蘭大學環境工程學系碩士學位論文。
校內:2022-12-31公開