| 研究生: |
陳盈良 Chen, Ying-Liang |
|---|---|
| 論文名稱: |
雲製造服務之委外生產管制 A Cloud Manufacturing Service to Control Outsourcing Production |
| 指導教授: |
鄭芳田
Cheng, Fan-Tien |
| 共同指導教授: |
楊浩青
Yang, Haw-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 虛擬生產管制服務 、雲製造服務 、無工廠IC製造商 、委外製造廠 、委外生產風險 、需求達交率 、在製品 |
| 外文關鍵詞: | virtual production control service (VPCS), cloud manufacturing service, fabless manufacturers (FM), contract manufacturer (CM), demand-fill rate (DFR), outsourcing production risk (OPR), work-in-process (WIP) |
| 相關次數: | 點閱:107 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
委外製造模式讓無工廠的製造商(Fabless manufacturers; FMs)可以集中資源在自己的核心業務,而在供應鏈仍可保有有競爭力。然而,整個生產活動皆由CM所承包,FMs很難管控委外生產風險,因此FM為了維持客戶的達交率通常須以較高的庫存水位來對應,但因此卻造成高庫存成本。本研究提出一個雲製造服務稱作虛擬生產管制服務(VPCS),目的協助FMs立即找出 CMs的潛在生產風險及相對應的解決方法以改善需求達交率。藉由萃取代工廠最新的在製品資訊,VPCS依據最佳生產模型即時推估出生產進度與潛在的生產風險。而且生產風險經過嶄新的風險控管程序處理後將得以減緩風險甚至解決,最後庫存水位可以降低下需求仍可以穩定達交。最後將以一家實際FM案例研究,以證明VPCS相對於傳統委外生產管理模式是可以大幅改善達交率與庫存水準。
Outsourcing production enables fabless companies to focus on their main business and yet still stay competitive in the supply chain. However, as the actual production progress of a Contract Manufacturer (CM) is encapsulated, the Fabless Manufacturer (FM) frequently struggles with higher inventory levels than its actual demands in response to outsourcing production risks. This study proposes Virtual Production Control Services (VPCS) for a company to identify the production risks of its CM and come up with corresponding solutions for improving demand fulfillment. By mining the updated work-in-process data from the CM, the VPCS can identify the potential production risks in a timely manner by estimating production progress based on an optimal planning model. In addition, production risks can be mitigated after applying a novel risk-control scheme such that demands can be fulfilled with reduced inventory levels. A FM case study indicates that VPCS is a promising method to improve the outsourcing efficiency of a company in the IC supply chain.
[1] Agnetis, A., M. A. Aloulou, and M. Y. Kovalyov. 2017. “Integrated Production Scheduling and Batch Delivery with Fixed Departure Times and Inventory Holding Costs.” International Journal of Production Research 55 (20): 6193-6206. doi: 10.1080/00207543.2017.1346323.
[2] Li, Y., Q. Chang, M. P. Brundage, S. Biller, J. Arinez, and G. Xiao. 2015. “Market Demand Oriented Data-Driven Modeling for Dynamic Manufacturing System Control.” IEEE Transactions on Systems, Man, and Cybernetics: Systems 45 (1): 109-121. doi: 10.1109/TSMC.2014.2316268.
[3] Kanga, H. Y., and A. H. I. Lee. 2010. “Inventory Replenishment Model Using Fuzzy Multiple Objective Programming: A Case Study of a High-Tech Company in Taiwan.” Applied Soft Computing 10 (4):1108–1118. doi: 10.1016/j.asoc.2009.11.035.
[4] Kogan, K., S. Lou, C. S. Tapiero, and M. Shnaiderman. 2010. “Supply Chain with Inventory Review and Dependent Demand Distributions: Dynamic Inventory Outsourcing.” IEEE Transactions on Automation Science and Engineering 7 (2):197–207. doi:10.1109/TASE.2008.2006569.
[5] Lehoux, N., S. D'Amours, Y. Frein, A. Langevin, and B. Penz. 2011. “Collaboration for a Two-Echelon Supply Chain in the Pulp and Paper Industry: The Use Of Incentives to Increase Profit.” Journal of the Operational Research Society 62(4): 581–592. doi: 10.1057/jors.2009.167.
[6] Ponsignon, T., and L. Mönch. 2012. “Heuristic Approaches for Master Planning in Semiconductor Manufacturing.” Computers & Operations Research 39(3): 479–491. doi: 10.1016/j.cor.2011.06.009.
[7] Tang, O., and S. N. Musa. 2011. “Identifying Risk Issues and Research Advancements in Supply Chain Risk Management.” International Journal of Production Economics 133 (1): 25–34. doi: 10.1016/j.ijpe.2010.06.013.
[8] Pushpa, A. 2014. “Outsourcing Risk Avoidance: Comparative Study of Manufacturing and Service Firms.” International Journal of Risk and Contingency Management 3(3): 1-17. doi: 10.4018/ijrcm.2014070101. doi: 10.4018/ijrcm.2014070101.
[9] Djalma, A. R., K. O. Taiane, and S. A. L. Maria. 2014. “Supply Chain Risk Classification: Discussion and Proposal.” International Journal of Production Research 53(22). doi:10.1080/00207543.2014.910620.
[10] Lee, J. Y., R. K. Cho, and S. K. Paik. 2016. “Supply Chain Coordination in Vendor-Managed Inventory Systems with Stock Out Cost Sharing under Limited Storage Capacity.” European Journal of Operational Research 248 (1): 95-106. doi:10.1016/j.ejor.2015.06.080.
[11] Chiu, C. H., and T. M. Choi. 2016. “Supply Chain Risk Analysis with Mean-Variance Models: A Technical Review.” Annals of Operations Research 240 (2): 489-507. doi: 10.1016/j.ejor.2018.09.007.
[12] Fan, Y., and M. Stevenson. 2018. “A Review of Supply Chain Risk Management: Definition, Theory, and Research Agenda.” International Journal of Physical Distribution & Logistics Management 48 (3): 205-230. doi: 10.1108/IJPDLM-01-2017-0043.
[13] Yu, C., Zhang, W., Xu, X., Ji, Y., & Yu, S. 2018. “Data mining based multi-level aggregate service planning for cloud manufacturing.” Journal of Intelligent Manufacturing 29(6): 1351-1361.
[14] Borangiu, T., D. Trentesaux, A. Thomas, P. Leitão, and J. Barata. 2019. “Digital Transformation of Manufacturing through Cloud Services and Resource Virtualization.” Computers in Industry 108: 150-162. doi:10.1016/j.compind.2019.01.006.
[15] Chen, J., G. Q Huang, J. Q. Wang, and C. Yang. 2019. “A Cooperative Approach to Service Booking and Scheduling in Cloud Manufacturing.” European Journal of Operational Research 273 (3): 861-873.
[16] Lei, R., et al. 2017. “Cloud Manufacturing: Key Characteristics and Applications 30(6):505-515.” International Journal of Computer Integrated Manufacturing. doi: 10.1080/0951192X.2014.902105.
[17] Wang, X. V., and L. Wang. 2017. “A Cloud-Based Production System for Information and Service Integration: An Internet of Things Case Study on Waste Electronics.” Enterprise Information Systems 11 (7): 952–968. doi: 10.1080/17517575.2016.1215539.
[18] Mönch, L., J. W. Fowler, S. Dauzère-Pérès, S. J. Mason, and O. Rose. 2011. “A Survey of Problems, Solution Techniques, and Future Challenges in Scheduling Semiconductor Manufacturing Operation.” Journal of Scheduling 14 (6): 583–599. doi: 10.1007/s10951-010-0222-9.
[19] Misra, S. C., S. B. Rahi, S. Bisui, and A. Singh. 2019. “Factors Influencing the Success of Cloud Adoption in the Semiconductor Industry.” Software Quality Professional 21 (2): 38-51.
[20] Qiu, R. G. 2005. “Virtual Production Line Based WIP Control for Semiconductor Manufacturing Systems.” International Journal of Production Economics 95 (2): 165-178. doi: 0.1016/j.ijpe.2003.12.004.
[21] Tang, W., and R. G. Qiu. 2004. “Integrated Design Approach for Virtual Production Line-Based Reconfigurable Manufacturing Systems.” International Journal of Production Research 42 (18): 3803-3822. doi: 10.1080/00207540410001699372.
[22] Matsumoto, S., and M. Matsuda. 2017. “Construction of a Virtual Production Line Including a Buffer for Simulation of Electric Power Consumption.” Procedia CIRP 63: 465-470. doi: 10.1016/j.procir.2017.03.107.
[23] Talkhestani, B. A. N. Jazdi, W. Schlögl, and M. Weyrich. 2018. “A Concept in Synchronization of Virtual Production System with Real Factory Based on Anchor-Point Method.” Procedia CIRP 67: 13–17. doi: 10.1016/j.procir.2017.12.168.
[24] Debevec, M. et al. 2016. "An Innovative Training of Production Planners Through Virtual Production Performing." Technical Gazette 23 (2): 363-369.doi: 10.17559/TV-20150130124330.
[25] Calle, M., P. L. González-R, J. M. Leon, H. Pierreval, and D. Canca. 2016. “Integrated Management of Inventory and Production Systems Based on Floating Decoupling Point and Real-Time Information: A Simulation Based Analysis.” International Journal of Production Economics 181 (A): 48-57.doi: 10.1016/j.ijpe.2016.08.001.
[26] Ghouri, A. M., and V. Mani. 2019. “Role of Real-Time Information-Sharing through Saas: An Industry 4.0 Perspective.” International Journal of Information Management 49: 301-315. doi: 10.1016/j.ijinfomgt.2019.05.026.
[27] Mustafa, K., and K. Cheng. 2017. “Improving Production Changeovers and the Optimization: A Simulation Based Virtual Process Approach and Its Application Perspectives.” Procedia Manufacturing 11: 2042-2050. doi: 10.1016/j.promfg.2017.07.356
[28] Fernandes, L. J., A. P. Barbosa-Póvoa, and S. Relvas. 2011. “Supply Chain Risk Management Review and A New Framework for Petroleum Supply Chains.” Quantitative Financial Risk Management 227–264. doi: 0.1007/978-3-642-19339-2_20.
[29] Hung, M. H., Y. C. Lin, S. H. Li, H. C. Yang, and F. T. Cheng. 2012. “Design and Implementation of a Data Exchange Platform for TFT-LCD Virtual Production Support Architectures.” International Journal of Automation and Smart Technology 2 (2): 83–94. doi:10.5875/ausmt.v2i2.121.
[30] Goldratt, E. M. (1990). Theory of constraints. Croton-on-Hudson: North River
[31] Gupta, J. N. D. 2006. A DBR scheduling method for manufacturing environments with bottleneck re-entrant flows. International Journal of Production Research, 44 (5), 883-902..
[32] Schragenheim, E., & Dettmer, H. W. (2000). Manufacturing at warp speed: Optimizing supply chain financial performance. CRC Press.