簡易檢索 / 詳目顯示

研究生: 林威宇
Lin, Wei-Yu
論文名稱: 利用冷凍乾燥製備具有方向性孔洞之明膠-鍶置換鈣磷化合物支架應用於骨組織工程
Fabrication of unidirectional porous gelatin-strontium substituted calcium phosphate scaffolds by freeze-drying for bone tissue engineering applications
指導教授: 張志涵
Chang, Chih-Han
共同指導教授: 李澤民
Lee, Tzer-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 明膠鈣磷化合物單向性冷凍乾燥骨組織工程
外文關鍵詞: gelatin, strontium, calcium phosphate, unidirectional freeze-drying, bone tissue engineering
相關次數: 點閱:96下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今由於受限於自體移植的短缺與異體移植的免疫排斥現象,人工合成的生醫材料需求量日漸增加,其中骨組織工程支架最佳的製備條件就是要與人體自然骨組織的成份與結構相仿,人體骨頭是由氫氧基磷灰石與膠原蛋白所組成,且兩者會順著骨骼所受的最大應力做方向性排列。如果於支架內添加鍶鈣磷的成份,有助於抑制骨吸收及促進新骨形成,更適合應用於骨質疏鬆之患者;而含有明膠成份之支架則較容易控制其孔洞結構。因此本研究利用共沉澱法直接於明膠溶液內合成三種不同濃度(S3CP、S5CP、S6CP)鍶置換鈣磷化合物,使兩者能夠均勻的混合,再經由單向性冷凍乾燥製備出具有方向性孔洞之複合材料支架。由電子顯微鏡與微形電腦斷層掃描觀察到支架均具有單一方向的孔洞,孔洞大小約200 m到400 m,適合骨組織工程支架的需求。透過能量散射光譜儀分析、傅立葉轉換紅外線光譜儀與X光粉末繞射儀,可知合成的鈣磷化合物主要由氫氧基磷灰石組成,且鍶離子有參雜進入其結構。支架進行交聯反應後,各組交聯指數都可達到約80%,可視為交聯完全,降解速率測試經過35天,重量損失約20%。當鍶鈣磷化合物含量增加,孔洞率會有下降的趨勢。由抗壓強度測試發現縱向較橫向強2至3倍,與人體自然骨相仿具有順向性結構之特性。於體外細胞培養,可觀察到類骨母細胞(MG63)貼附形態良好,經由靜態與改良之動態培養可知含鍶的S5CP支架最適合培養細胞。由上述結果,本研究所製備的鍶置換之單向多孔性支架可應用於骨組織工程。

    Recently, the demands for the use of artificial materials in the biomedical field have increased significantly due to the limited accessibility of autografts as well as the immune responsie associated with allografts. The best conditions for bone tissue engineering scaffolds are to stimulate the content and structure of human bone. The hydroxyapatite and collagen comprise the main component of human bone, and highly ordered hierarchical structure. Strontium and calcium phosphate can inhibit bone resorption and enhance new bone formation, especially for low bone density patients. Gelatin is often used to produce scaffolds, since it has good flexibility to control the pore structure. In this study, the even gelatin-calcium phosphate nanocomposite were fabricated by the co-precipitation of three different concentrations of calcium phosphate within a gelatin sol (S3CP, S5CP, S6CP). Then porous scaffolds with microtubule orientation structure were manufactured by unidirectional freeze-drying technology, and aligned porous structure was characterized by SEM. Pore sizes in the range 200-400 m, are generally considered as a good requirement for bone tissue engineering. The composite was characterized using an Energy Dispersive Spectrometers (EDS), Fourier Transform Infrared Spectrometer (FTIR) and X-ray Diffraction (XRD). The calcium phosphate compounds composed mainly of hydroxyapatite, and result showed the Sr-HA has mixed phase. The crosslinked scaffolds resulted to 80% crosslinking index and degradation study showed that the scaffolds degraded about 20% after 5 weeks. The porosity of scaffolds decreased with increasing calcium phosphate concentration and the compressive strength in the longitudinal direction was 2-3 fold higher than transverse direction, the same as nature bone structure feature. In vitro, MG63 cell showed good attachment on the scaffold. In addition, containing strontium of S5CP scaffolds by using static culture and optimized dynamic culture are most suitable scaffolds for cell viability. As a result, the gelatin-calcium phosphate nanocomposite scaffolds have great potential for use as bone tissue engineering.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 骨組織工程之演進 2 1-2-1 生醫材料的定義 2 1-2-2 生醫材料的分類 4 1-2-2-1 天然移植骨材料 4 1-2-2-2 人工移植骨材料 6 1-2-3 組織工程 8 1-2-3-1 組織工程支架需具備的條件 8 1-2-3-2 骨組織工程支架常用的材料 9 1-2-3-3 支架製備方法 9 1-3 骨骼介紹 10 1-3-1 骨骼成份 11 1-3-2 骨骼結構 12 1-3-3 骨骼重建機制 13 1-3-4 骨質疏鬆 14 1-4 明膠特性介紹 15 1-5 鍶置換鈣磷化合物與氫氧基磷灰石特性介紹 16 1-6 研究動機與目的 18 第二章 材料與方法 19 2-1 實驗流程 19 2-2 單向性孔洞支架製備方法 19 2-2-1 冷凍模具製備 19 2-2-2 製備明膠-鍶鈣磷化合物支架 20 2-3 材料特性分析 21 2-3-1 鈣磷化合物顯微形態觀察 21 2-3-2 支架顯微形態觀察 22 2-3-3 微形電腦斷層掃描 22 2-3-4 孔徑大小量測 22 2-3-5 材料表面元素分析 22 2-3-6 材料官能基分析 23 2-3-7 材料表面相組成分析 23 2-3-8 膨潤率量測 23 2-3-9 交聯指數量測 24 2-3-10 孔隙率量測 25 2-3-11 支架體外降解測試 25 2-3-12 抗壓強度測試 25 2-4 體外細胞實驗 26 2-4-1 類骨母細胞 26 2-4-2 細胞解凍 26 2-4-3 細胞繼代 26 2-4-4 細胞培養於支架 27 2-4-5 細胞培養方式 27 2-4-6 細胞形態觀察 28 2-4-7 細胞增生測定 29 2-5 統計分析 29 第三章 結果 30 3-1 材料分析 30 3-1-1 合成粉末大小與形態 30 3-1-2 支架形態觀察 30 3-1-3 元素分析 31 3-1-4 官能機與相組成鑑定 31 3-1-5 交聯反應時間與交聯指數 31 3-1-6 孔隙率 32 3-1-7 體外降解速率 32 3-1-8 抗壓強度 32 3-2 體外細胞實驗 33 3-2-1 細胞貼附形態 33 3-2-2 細胞於不同濃度支架生長情況 33 3-2-3 細胞於鍶置換支架生長情況 34 第四章 討論 35 第五章 結論 40 參考文獻 41

    1 L. Cui, B. Liu, G. Liu, W. Zhang, L. Cen, J. Sun, S. Yin, W. Liu, and Y. Cao, "Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model," Biomaterials 28 (36), 5477-5486 (2007).
    2 J. C. Reichert, S. Saifzadeh, M. E. Wullschleger, D. R. Epari, M. A. Schutz, G. N. Duda, H. Schell, M. van Griensven, H. Redl, and D. W. Hutmacher, "The challenge of establishing preclinical models for segmental bone defect research," Biomaterials 30 (12), 2149-2163 (2009).
    3 A. Gisep, "Research on ceramic bone substitutes: current status," Injury 33 Suppl 2, B88-92 (2002).
    4 B. D. Ratner and L. Hench, "Perspectives on biomaterials," Curr Opin Solid St M 4 (4), 379-380 (1999).
    5 M. D. DeLacure, "Physiology of bone healing and bone grafts," Otolaryngol Clin North Am 27 (5), 859-874 (1994).
    6 R. Langer and J. P. Vacanti, "Tissue engineering," Science 260 (5110), 920-926 (1993).
    7 R. Langer, J. P. Vacanti, C. A. Vacanti, A. Atala, L. E. Freed, and G. Vunjak-Novakovic, "Tissue engineering: biomedical applications," Tissue Eng 1 (2), 151-161 (1995).
    8 L. T. Ostrup and J. M. Fredrickson, "Distant transfer of a free, living bone graft by microvascular anastomoses. An experimental study," Plast Reconstr Surg 54 (3), 274-285 (1974).
    9 A. Yuceturk, C. Tuncay, U. Isiklar, and R. Tandogan, "Vascularised bone graft applications in upper extremity problems," Microsurgery 18 (3), 160-162 (1998).
    10 M. R. Urist, "Physiologic basis of bone- graft surgery, with special reference to the theory of induction," Clin, Orthop. 1, 207 (1953).
    11 N. C. Lindfors, K. Tallroth, and A. J. Aho, "Bioactive glass as bone-graft substitute for posterior spinal fusion in rabbit," J Biomed Mater Res 63 (2), 237-244 (2002).
    12 M. R. Urist, "Bone grafts, Derivatives and Substitutes," Butterworth-Heinemann in Oxford, Boston, 3-102 (1994).
    13 L. Turek, "In: Orthopaedic Principles and their Applications, " Lippincott Company, Philadelphia, 598–599 (1984).
    14 A. Ravaglioli, A. Krajewski, "Bioceramics: Materials, properties, applications," Chapman and Hall, London and New York, 1-5 (1992).
    15 U. Gross, H. J. Schmitz, and V. Strunz, "Surface activities of bioactive glass, aluminum oxide, and titanium in a living environment," Ann N Y Acad Sci 523, 211-226 (1988).
    16 P. Predecki, B. A. Auslaender, J. E. Stephan, V. L. Mooney, and C. Stanitski, "Attachment of bone to threaded implants by ingrowth and mechanical interlocking," J Biomed Mater Res 6 (5), 401-412 (1972).
    17 F. C. M. Driessens, "The Mineral in Bone, Dentin and Tooth Enamel," B Soc Chim Belg 89 (8), 663-689 (1980).
    18 J. Charnely, "Acrylic Cement in Orthopaedic Surgery," Williams and Wilkins Co., Baltimore, 127 (1970).
    19 K. E. Uhrich, D. R. Larrier, C. T. Laurencin, and R. Langer, "In vitro degradation characteristics of poly(anhydride-imides) containing pyromellitylimidoalanine," J Polym Sci Pol Chem 34 (7), 1261-1269 (1996).
    20 M. J. Yaszemski, R. G. Payne, W. C. Hayes, R. Langer, and A. G. Mikos, "Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone," Biomaterials 17 (2), 175-185 (1996).
    21 H. Ishizawa and M. Ogino, "Formation and characterization of anodic titanium oxide films containing Ca and P," J Biomed Mater Res 29 (1), 65-72 (1995).
    22 H. Ishizawa and M. Ogino, "Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment," J Biomed Mater Res 29 (9), 1071-1079 (1995).
    23 K. Takatsuka, T. Yamamuro, T. Nakamura, and T. Kokubo, "Bone-bonding behavior of titanium alloy evaluated mechanically with detaching failure load," J Biomed Mater Res 29 (2), 157-163 (1995).
    24 H. Mittelmeier and B. D. Katthagen, "Clinical experience with the implantation of collagen-apatite for local bone regeneration," Z Orthop Ihre Grenzgeb 121 (2), 115-123 (1983).
    25 M. Ueda, I. Tohnai, and H. Nakai, "Tissue engineering research in oral implant surgery," Artif Organs 25 (3), 164-171 (2001).
    26 A. G. Mikos, Y. Bao, L. G. Cima, D. E. Ingber, J. P. Vacanti, and R. Langer, "Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation," J Biomed Mater Res 27 (2), 183-189 (1993).
    27 C. S. Chen, I. V. Yannas, and M. Spector, "Pore strain behaviour of collagen-glycosaminoglycan analogues of extracellular matrix," Biomaterials 16 (10), 777-783 (1995).
    28 X. Wu, Y. Liu, X. Li, P. Wen, Y. Zhang, Y. Long, X. Wang, Y. Guo, F. Xing, and J. Gao, "Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method," Acta Biomater 6 (3), 1167-1177 (2010).
    29 H. W. Kang, Y. Tabata, and Y. Ikada, "Fabrication of porous gelatin scaffolds for tissue engineering," Biomaterials 20 (14), 1339-1344 (1999).
    30 L. Lu and A. G. Mikos, "The importance of new processing techniques in tissue engineering," MRS Bull 21 (11), 28-32 (1996).
    31 C. Lhommeau, H. Levene, S. Abramson, J. Kohn, "Preparation of Highly Interconnected Porous Tyrosine-Derived Polycarbonates Scaffolds," Tissue Engineering 4 (4),168 (1998).
    32 J. W. Hole, "Human Anatomy," WCB, Dubuque, 117-256 (1994).
    33 劉百栓,以天然交聯劑綠梔子素交聯明膠結合三鈣磷酸鹽粉末之新骨科替代材料的研製與評估,國立中興大學化學工程學系所碩士論文 (2003)
    34 N. Sasaki and Y. Sudoh, "X-ray pole figure analysis of apatite crystals and collagen molecules in bone," Calcif Tissue Int 60 (4), 361-367 (1997).
    35 S. B. Lee, H. W. Jeon, Y. W. Lee, Y. M. Lee, K. W. Song, M. H. Park, Y. S. Nam, and H. C. Ahn, "Bio-artificial skin composed of gelatin and (1-->3), (1-->6)-beta-glucan," Biomaterials 24 (14), 2503-2511 (2003).
    36 F. J. Courts, "Standardization and calibration in the evaluation of clinical performance," J Dent Educ 61 (12), 947-950 (1997).
    37 D. F. Williams "Biocompatiblity of clinical implant materials," CRC Press, Boca Raton Florida, 1-45 (1981).
    38 G. Daculsi, R. Z. LeGeros, M. Heughebaert, and I. Barbieux, "Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics," Calcif Tissue Int 46 (1), 20-27 (1990).
    39 L. L. Hench, "Bioceramics - from Concept to Clinic," Journal of the American Ceramic Society 74 (7), 1487-1510 (1991).
    40 H. W. Kim, H. E. Kim, and V. Salih, "Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds," Biomaterials 26 (25), 5221-5230 (2005).
    41 H. W. Kim, J. C. Knowles, and H. E. Kim, "Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release," Journal of biomedical materials research Part B Applied biomaterials 74 (2), 686-698 (2005).
    42 S. Yang, K. F. Leong, Z. Du, and C. K. Chua, "The design of scaffolds for use in tissue engineering. Part I. Traditional factors," Tissue Eng 7 (6), 679-689 (2001).
    43 林雙蘊,膠原蛋白支架孔隙結構探討,國立成功大學醫學工程研究所碩士論文 (2007)
    44 S. Deville, E. Saiz, and A. P. Tomsia, "Freeze casting of hydroxyapatite scaffolds for bone tissue engineering," Biomaterials 27 (32), 5480-5489 (2006).
    45 S. Deville, E. Saiz, and A. P. Tomsia, "Ice-templated porous alumina structures," Acta Materialia 55 (6), 1965-1974 (2007).
    46 S. M. Lien, W. T. Lia and T. J. Huang, "Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method," Materials Science and Engineering: C 28 (1), 36-43 (2008).
    47 C. H. Yao, B. S. Liua, C.J. Chang, S.H. Hsu and Y. S. Chen, "Preparation of networks of gelatin and genipin as degradable biomaterial," Materials Chemistry and Physics 83 (2-3), 204-208 (2004).
    48 S. Yunoki, T. Ikoma, A. Tsuchiya, A. Monkawa, K. Ohta, S. Sotome, K. Shinomiya, and J. Tanaka, "Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite," J Biomed Mater Res B Appl Biomater 80 (1), 166-173 (2007).
    49 J. V. Araujo, C. R. Cassilda, T. Rada, M. A. da Silva, M. E. Gomes, Y. Yang, N. Ashammakhi, R. L. Reis, A. J. El-Haj, N. M. Neves, " Dynamic culture of osteogenic cells in biomimetically coated poly(caprolactone) nanofibre mesh constructs," Tissue Eng Part A 16 (2), 557-563 (2010).
    50 H. W. Kim, J. C. Knowles, and H. E. Kim, " Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds," Journal of biomedical materials research 72A, 136-145 (2005).
    51 W. Xue, J. L. Moore, H. L. Hosick, S. Bose, A. Bandyopadhyay, W. W. Lu, K. M. C. Cheung, K. D. K. Luk, " Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics," Journal of Biomedical Materials Research Part A 79A (4), 804-814 (2006).

    下載圖示 校內:2014-09-05公開
    校外:2014-09-05公開
    QR CODE