簡易檢索 / 詳目顯示

研究生: 林東申
Lin, Tung-Shen
論文名稱: 開發用於中風復健的虛擬實境生成式雙手協同任務導向系統:健康成人的手部功能和腦電圖驗證
Development of A Virtual Reality-Based Generative Bimanual Cooperative Task-Oriented System for Stroke Rehabilitation: Hand Function and EEG Validation in Healthy Adults
指導教授: 林哲偉
Lin, Che-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 111
中文關鍵詞: 虛擬實境鏡像治療雙手協調協同任務手部精細運動提升腦電圖
外文關鍵詞: Virtual Reality Mirror Therapy, Bimanual Coordination, Cooperative Task, Fine Motor Improvement, EEG
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討利用虛擬實境開發的新型上肢復健方法,虛擬實境生成式雙手協同任務導向中風復健系統 (VRGBCTO),我們設計十種模擬日常生活的任務,透過鏡像手模擬雙手協同動作,評估其對於手部精細運動功能、雙手協調性提升的有效性,與既有的虛擬實境鏡像治療(VRMT)之單手視覺回饋方式進行比較。招募30名慣用手為右手的健康受試者,隨機接受VRGBCTO及VRMT兩種介入,每次介入持續17分鐘,每種介入都包含10種任務導向情境,皆使用慣用手進行操作,並利用腦電圖(EEG)記錄運動執行及休息階段的大腦活動變化。評估指標包含手部功能測試以及腦電圖分析。在手部功能測試結果顯示,VRGBCTO 能有效改善抓握提舉測試(平均力比值改善: p < .001, 總體峰值力量改善: p < .001, 最高力比值改善: p < .001)、明尼蘇達手動敏捷測試(放置: p < .001, 翻轉: p < .001)、單絲測試(大拇指: p = .009)等多項評估指標,但與單純VRMT相比,未達統計上的差異。而在普渡釘板測試中VRGBCTO 在雙手協調與組裝測試中顯著優於VRMT(p = .005, p < .001)。腦電圖分析表明,VRGBCTO與VRMT呈現相似的腦部活化程度,但未達統計上的差異,而在腦區間的連結性,VRGBCTO在Mu與Beta頻段呈現更多跨半球連結顯著提升,特別是在右顳葉(T4)與左前額葉(FP1)、右額葉(F4)與左頂葉(P3)、左枕葉(O1)與右枕葉(O2)間之連結(如T4-FP1: p = .045, F4-P3: p = .039, O1-O2: p = .036)皆顯著高於VRMT,顯示其在促進左右腦整合與感知動作協調上的潛力。結果表明,VRGBCTO 不僅在同側感覺運動皮質的活化程度上與 VRMT 相當,亦更有效促進雙手協同操作與左右腦區間的功能連結,為未來應用於中風患者之上肢復健提供具潛力的新型模式。

    This thesis explores a novel upper limb rehabilitation approach developed using virtual reality: A Virtual Reality-Based Generative Bimanual Cooperative Task-Oriented System for Stroke Rehabilitation (VRGBCTO). We designed ten daily life–inspired tasks to simulate bimanual coordination through mirrored hand movements. The system’s effectiveness in improving fine motor function and bimanual coordination was evaluated and compared with the existing virtual reality mirror therapy (VRMT) featuring unilateral visual feedback. Thirty right-handed healthy participants were recruited and randomly assigned to receive either VRGBCTO or VRMT. Each intervention lasted 17 minutes and included 10 task-oriented scenarios, all performed using the participants' dominant hand. Electroencephalography (EEG) was recorded throughout both motor execution and resting phases to assess neural activity. Outcome measures included standardized hand function tests and EEG-based brain activity analysis. The results of hand function assessments demonstrated that the VRGBCTO intervention effectively improved several performance metrics, including the Pinch Holding Up Activity (improvements in mean force: p < .001; peak force: p < .001; maximum force: p < .001), the Minnesota Manual Dexterity Test (placing: p < .001, turning: p < .001), and the Two-Point Discrimination (thumb: p = .009). However, no statistically significant differences were observed when compared to the VRMT group. In contrast, the Purdue Pegboard Test revealed that VRGBCTO significantly outperformed VRMT in tasks requiring bimanual coordination and assembly (bimanual coordination: p = .005; assembly: p < .001). EEG analysis revealed comparable levels of brain activation between the two groups, without significant differences. However, functional connectivity analysis showed that the VRGBCTO group exhibited significantly greater interhemispheric coherence in both Mu and Beta bands, particularly between the right temporal lobe (T4) and left prefrontal cortex (FP1), right frontal cortex (F4) and left parietal cortex (P3), and between the left and right occipital lobes (O1–O2) (e.g., T4–FP1: p = 0.045; F4–P3: p = 0.039; O1–O2: p = 0.036). These findings suggest that VRGBCTO may enhance bilateral cortical integration and visuomotor coordination. In conclusion, VRGBCTO not only achieved comparable cortical activation in the ipsilateral sensorimotor areas as VRMT but also showed superior potential in promoting bimanual coordination and interhemispheric functional connectivity. This novel rehabilitation model may offer a promising direction for future upper limb rehabilitation in stroke patients.

    摘要 I ABSTRACT III ABBREVIATION LIST VI TABLE OF CONTENTS VIII LIST OF TABLES X LIST OF FIGURES XI CHAPTER 1 OVERVIEW 1 1.1 INTRODUCTION 1 1.1.1 Background 1 1.1.2 Upper Extremity Rehabilitation Therapy (MT & BT) 2 1.1.3 Virtual Reality Upper Extremity Rehabilitation Therapy 4 1.2 LITERATURE REVIEW 4 1.2.1 Mirror therapy(MT)and Bilateral Upper Limb Training(BT)4 1.2.2 Virtual Reality for Upper Extremity Rehabilitation Applications 6 1.2.3 EEG Indicator in Rehabilitation 9 1.3 RESEARCH OBJECTIVE 11 CHAPTER 2 METHODOLOGY AND MATERIAL 13 2.1 DEVELOPMENT OF THE VRGBCTO SYSTEM 13 2.1.1 Hardware 13 2.1.2 Development Tools 15 2.1.3 Virtual Cooperative Tasks 16 2.1.4 System Architecture 27 2.2 DEVELOPMENT PROGRESS 30 2.2.1 Hand Tracking 30 2.2.2 Mirror Hand Generation 32 2.2.3 Virtual Character Implementation 35 2.2.4 Interactive Cooperative Virtual Objects 39 2.2.5 Scene Production 44 2.3 EXPERIMENTAL DESIGN 46 2.3.1 Objective 46 2.3.2 Participant Criteria 46 2.3.3 Experimental Intervention 47 2.3.4 Hand Function Evaluation Tools 50 2.3.5 EEG Indicator Calculation 57 CHAPTER 3 RESULT AND DISCUSSION 62 3.1 RESULT 62 3.1.1 Subjects 62 3.1.2 Hand Function Examination 63 3.1.3 EEG Brain Activation Result 69 3.2 DISCUSSION 78 CHAPTER 4 CONCLUSION AND FUTURE WORK 86 4.1 CONCLUSION 86 4.2 LIMITATION 87 4.3 FUTURE WORK 89 REFERENCE LIST 91

    W. H. Organization,“Global Health Estimates: Disease burden by cause, age, sex, by country and by region, 2000–2019,” Geneva, 2021. Accessed: 2024-05-26. [Online]. Available: https://www.who.int/data/gho/data/themes/mortality-and global-health-estimates
    程斯曼 et al.,“重复经颅磁刺激改善脑卒中功能障碍的功能磁共振成像研究: Scoping 综述,” 中国康复理论与实践, vol. 29, no. 2, pp. 193-204, 2023.
    J. H. Cauraugh and J. J. Summers,“Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke,” Progress in neurobiology, vol. 75, no. 5, pp. 309-320, 2005.
    D. B. Gandhi, A. Sterba, H. Khatter, and J. D. Pandian,“Mirror therapy in stroke rehabilitation: current perspectives,” Therapeutics and clinical risk management, pp. 75-85, 2020.
    K.-B. Lim, H.-J. Lee, J. Yoo, H.-J. Yun, and H.-J. Hwang,“Efficacy of mirror therapy containing functional tasks in poststroke patients,” Annals of rehabilitation medicine, vol. 40, no. 4, pp. 629-636, 2016.
    E. Akdoğan,“Upper limb rehabilitation robot for physical therapy: design, control, and testing,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 24, no. 3, pp. 911-934, 2016.
    R. Teasell et al.,“Canadian stroke best practice recommendations: rehabilitation, recovery, and community participation following stroke. Part one: rehabilitation and recovery following stroke; update 2019,” International Journal of Stroke, vol. 15, no. 7, pp. 763-788, 2020.
    H. Thieme, J. Mehrholz, M. Pohl, J. Behrens, and C. Dohle,“Mirror therapy for improving motor function after stroke,” Stroke, vol. 44, no. 1, pp. e1-e2, 2013.
    I. Nojima, T. Mima, S. Koganemaru, M. N. Thabit, H. Fukuyama, and T. Kawamata,“Human motor plasticity induced by mirror visual feedback,” Journal of Neuroscience, vol. 32, no. 4, pp. 1293-1300, 2012.
    L. Ding et al., “Camera-based mirror visual feedback: potential to improve motor preparation in stroke patients,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 9, pp. 1897-1905, 2018.
    H.-Y. Hsu, L.-C. Kuo, Y.-C. Lin, F.-C. Su, T.-H. Yang, and C.-W. Lin,“Effects of a virtual reality–based mirror therapy program on improving sensorimotor function of hands in chronic stroke patients: a randomized controlled trial,” Neurorehabilitation and Neural Repair, vol. 36, no. 6, pp. 335-345, 2022.
    C.-W. Lin, L.-C. Kuo, Y.-C. Lin, F.-C. Su, Y.-A. Lin, and H.-Y. Hsu,“Development and testing of a virtual reality mirror therapy system for the sensorimotor performance of upper extremity: A pilot randomized controlled trial,” IEEE Access, vol. 9, pp. 14725-14734, 2021.
    羅敏文, 黃淑桂, 林克忠, and 吳菁宜,“鏡像治療的臨床應用及腦部機制探討之文獻回顧,” 臺灣職能治療研究與實務雜誌, vol. 6, no. 1, pp. 37-49, 2010.
    A. S. Rothgangel, S. M. Braun, A. J. Beurskens, R. J. Seitz, and D. T. Wade,“The clinical aspects of mirror therapy in rehabilitation: a systematic review of the literature,” International Journal of Rehabilitation Research, vol. 34, no. 1, pp. 1-13, 2011.
    N. Jaafar, A. Z. Che Daud, N. F. Ahmad Roslan, and W. Mansor,“Mirror therapy rehabilitation in stroke: a scoping review of upper limb recovery and brain activities,” Rehabilitation Research and Practice, vol. 2021, no. 1, p. 9487319, 2021.
    K. C. Stewart, J. H. Cauraugh, and J. J. Summers,“Bilateral movement training and stroke rehabilitation: a systematic review and meta-analysis,” Journal of the neurological sciences, vol. 244, no. 1-2, pp. 89-95, 2006.
    張雅棻, 黃琬倩, 林娜翎, 黃昱, 紀皇如, and 吳菁宜,“中風病患雙側動作訓練療效之文獻回顧,” 臺灣職能治療研究與實務雜誌, vol. 4, no. 1, pp. 1-16, 2008.
    P.-m. Chen, P. W. Kwong, C. K. Lai, and S. S. Ng,“Comparison of bilateral and unilateral upper limb training in people with stroke: A systematic review and metaanalysis,” PloS one, vol. 14, no. 5, p. e0216357, 2019.
    S. S. Lam, T. W. Liu, S. S. Ng, C. W. Lai, and J. Woo,“BILATERAL MOVEMENT BASED COMPUTER GAMES IMPROVE SENSORIMOTOR FUNCTIONS IN SUBACUTE STROKE SURVIVORS: A RANDOMIZED CONTROLLED TRIAL,” Journal of Rehabilitation Medicine (Stiftelsen Rehabiliteringsinformation), vol. 54, 2022.
    Y.-H. Song and H.-M. Lee,“Effect of immersive virtual reality-based bilateral arm training in patients with chronic stroke,” Brain sciences, vol. 11, no. 8, p. 1032, 2021.
    S. H. Jang et al.,“Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study,” Archives of physical medicine and rehabilitation, vol. 86, no. 11, pp. 22182223, 2005.
    Y. J. Kang et al.,“Upper extremity rehabilitation of stroke: facilitation of corticospinal excitability using virtual mirror paradigm,” Journal of neuroengineering and rehabilitation, vol. 9, pp. 1-8, 2012.
    W.-S. Kim et al.,“Clinical application of virtual reality for upper limb motorrehabilitation in stroke: review of technologies and clinical evidence,” Journal of clinical medicine, vol. 9, no. 10, p. 3369, 2020.
    D. Wei, X.-Y. Hua, M.-X. Zheng, J.-J. Wu, and J.-G. Xu,“Effectiveness of robotassisted virtual reality mirror therapy for upper limb motor dysfunction after stroke: study protocol for a single-center randomized controlled clinical trial,” BMC neurology, vol. 22, no. 1, p. 307, 2022.
    M. F. Levin and M. Demers,“Motor learning in neurological rehabilitation,” Disability and rehabilitation, vol. 43, no. 24, pp. 3445-3453, 2021.
    G. S. Omar et al.,“Effectiveness of Mirror Therapy, Electrical Stimulation, and CIMT in Restoring Upper Extremity Function after Stroke.”
    K. Patowary,“A Review of Literature on the Efficacy of Mirror Therapy for Improving Gait, Balance, and Motor Recovery in Post-Stroke Patients.”
    J. Li, X. Yin, Y. Yang, and X. Li,“Bibliometric and visual analysis of post-stroke hemiplegia in the past 20 years,” Clin Res Commun, vol. 7, no. 3, p. 17, 2024.
    S. Chen, Y. Qiu, C. C. Bassile, A. Lee, R. Chen, and D. Xu,“Effectiveness and success factors of bilateral arm training after stroke: a systematic review and metaanalysis,” Frontiers in Aging Neuroscience, vol. 14, p. 875794, 2022.
    A. Gnanaprakasam, S. Karthikbabu, N. Ravishankar, and J. M. Solomon,“Effect of task-based bilateral arm training on upper limb recovery after stroke: A systematic review and meta-analysis,” Journal of Stroke and Cerebrovascular Diseases, vol. 32, no. 7, p. 107131, 2023.
    Y. Sun et al.,“Application of a Dual Upper Limb Task-Oriented Robotic System for the Functional Recovery of the Upper Limb in Stroke Patients,” Journal of Visualized Experiments (JoVE), no. 212, p. e67004, 2024.
    R. Sainburg, D. Good, and A. Przybyla,“Bilateral synergy: a framework for post stroke rehabilitation,” Journal of neurology & translational neuroscience, vol. 1, no. 3, 2013.
    K. N. Arya, S. Pandian, D. Kumar, and V. Puri,“Task-based mirror therapy augmenting motor recovery in poststroke hemiparesis: a randomized controlled trial,” Journal of Stroke and cerebrovascular diseases, vol. 24, no. 8, pp. 1738-1748, 2015.
    J. Bui, J. Luauté, and A. Farnè,“Enhancing upper limb rehabilitation of stroke patients with virtual reality: A mini review. Frontiers in Virtual Reality, 2,” ed, 2021.
    K. Matys-Popielska, K. Popielski, P. Matys, and A. Sibilska-Mroziewicz,“Immersive Virtual Reality Application for Rehabilitation in Unilateral Spatial Neglect: A Promising New Frontier in Post-Stroke Rehabilitation,” Applied Sciences, vol. 14, no. 1, p. 425, 2024.
    C. Tang et al.,“Bilateral upper limb robot-assisted rehabilitation improves upperlimb motor function in stroke patients: a study based on quantitative EEG,” European Journal of Medical Research, vol. 28, no. 1, p. 603, 2023.
    J.-Y. Zhuang, L. Ding, B.-B. Shu, D. Chen, and J. Jia,“Associated mirror therapy enhances motor recovery of the upper extremity and daily function after stroke: a randomized control study,” Neural Plasticity, vol. 2021, no. 1, p. 7266263, 2021.
    A. Aşkın, E. Atar, H. Koçyiğit, and A. Tosun,“Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke,” Somatosensory & motor research, vol. 35, no. 1, pp. 25-32, 2018.
    L. M. Weber, D. M. Nilsen, G. Gillen, J. Yoon, and J. Stein,“Immersive virtual reality mirror therapy for upper limb recovery after stroke: a pilot study,” American journal of physical medicine & rehabilitation, vol. 98, no. 9, pp. 783-788, 2019.
    P. Sip, M. Kozłowska, D. Czysz, P. Daroszewski, and P. Lisiński,“Perspectives of motor functional upper extremity recovery with the use of immersive virtual reality in stroke patients,” Sensors, vol. 23, no. 2, p. 712, 2023.
    S. H. Bae, W. S. Jeong, and K. Y. Kim,“Effects of mirror therapy on subacute stroke patients’ brain waves and upper extremity functions,” Journal of Physical Therapy Science, vol. 24, no. 11, pp. 1119-1122, 2012.
    T.-H. Liu, C.-H. Chein, H.-Y. Hsu, and C.-W. Lin,“EEG-Based Assessment of Bilateral Brain Activation Comparison and Hand Functional Improvement Using Virtual Reality Mirror Therapy Combined with Robot-Assisted Upper Limb Intervention,” in 2024 17th International Convention on Rehabilitation Engineering and Assistive Technology (i-CREATe), 2024: IEEE, pp. 1-6.
    E. Altenmüller, J. Marco‐Pallares, T. Münte, and S. Schneider,“Neural reorganization underlies improvement in stroke‐induced motor dysfunction by music‐supported therapy,” Annals of the New York Academy of Sciences, vol. 1169, no. 1, pp. 395-405, 2009.
    S. W. Tung et al.,“Motor imagery BCI for upper limb stroke rehabilitation: An evaluation of the EEG recordings using coherence analysis,” in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013: IEEE, pp. 261-264.
    H.-Y. Hsu,“Development of a Virtual Reality Mirror Therapy System Combining Rhythm Music and Vibration Stimulation for Upper Limb Rehabilitation in Stroke Hemiplegia Patients,” in International Conference on Biomedical and Health Informatics 2024: Proceedings of ICBHI 2024, October 30–November 2, 2024, Tainan, Taiwan: Springer Nature, p. 360.
    “Meta Quest 3.”https://www.meta.com/tw/quest/quest3/?utm_source=gg&utm_medium=ps&utm_campaign=20557408948&utm_term=q94 uest%203&utm_content=704526509640&utm_ad=153884639215&utm_location=9199124&utm_location2=&utm_placement=aud-2081998533248%3Akwd928573152465&utm_device=c&utm_matchtype=e&utm_feed=&utm_adposition=&utm_product=&gad_source=1&gclid=Cj0KCQiAy8K8BhCZARIsAKJ8sfTFHIrmmlHldS16MZAn8d91r2ciCOs2mrIAOVM7XKQuY9795SRIAuIaAtjuEALw_wcB&gclsrc=aw.ds (accessed 2025).
    C. Chien-hsin.“VR market down 4% in Q324, survey: AR glasses expected to grow faster in 2025.” TechNews. https://technews.tw/2024/12/30/vr-headset-ar-glass/ (accessed 2025).
    S. Han et al.,“MEgATrack: monochrome egocentric articulated hand-tracking for virtual reality,” ACM Transactions on Graphics (ToG), vol. 39, no. 4, pp. 87: 1-87: 13, 2020.
    H. Y. Hsu, L. C. Kuo, H. Y. Chiu, I. M. Jou, and F. C. Su,“Functional sensibility assessment. Part II: Effects of sensory improvement on precise pinch force modulation after transverse carpal tunnel release,” Journal of Orthopaedic Research, vol. 27, no. 11, pp. 1534-1539, 2009.
    H.-Y. Chiu et al.,“How the impact of median neuropathy on sensorimotor control capability of hands for diabetes: an achievable assessment from functional perspectives,” PloS one, vol. 9, no. 4, p. e94452, 2014.
    D. K. Lindstrom-Hazel and N. VanderVlies Veenstra,“Examining the Purdue pegboard test for occupational therapy practice,” The Open Journal of Occupational Therapy, vol. 3, no. 3, p. 5, 2015.
    L. Insrument.“Purdue Pegboard Test: User Instructions Model 32020A.” https://www.limef.com/downloads/MAN-32020A-forpdf-rev0.pdf (accessed 2025).
    J. Desrosiers, R. Hébert, G. Bravo, and E. Dutil,“The Purdue Pegboard Test: normative data for people aged 60 and over,” Disability and rehabilitation, vol. 17, no. 5, pp. 217-224, 1995.
    M. Suda et al.,“Validity and reliability of the Semmes-Weinstein Monofilament test and the thumb localizing test in patients with stroke,” Frontiers in neurology, vol. 11, p. 625917, 2021.
    L. Insrument.“The Minnesota Manual Dexterity Test : Examiner's Manual Model 32032.” https://meetinstrumentenzorg.nl/wp-content/uploads/instrumenten/CMDThandl-Eng.pdf (accessed 2025).
    N. Kapadia, V. Zivanovic, M. Verrier, and M. Popovic,“Toronto Rehabilitation Institute–hand function test: assessment of gross motor function in individuals with spinal cord injury,” Topics in spinal cord injury rehabilitation, vol. 18, no. 2, pp. 167-186, 2012.
    T. Wolny, P. Linek, and P. Michalski,“Inter-rater reliability of two-point discrimination in acute stroke patients,” NeuroRehabilitation, vol. 41, no. 1, pp. 127-134, 2017.
    C. Brunner, A. Delorme, and S. Makeig,“Eeglab–an open source matlab toolbox for electrophysiological research,” Biomedical Engineering/Biomedizinische Technik, vol. 58, no. SI-1-Track-G, p. 000010151520134182, 2013.
    N. A. Fox et al.,“Assessing human mirror activity with EEG mu rhythm: A metaanalysis,” Psychological bulletin, vol. 142, no. 3, p. 291, 2016.
    C. Tzagarakis, N. F. Ince, A. C. Leuthold, and G. Pellizzer,“Beta-band activity during motor planning reflects response uncertainty,” Journal of Neuroscience, vol. 30, no. 34, pp. 11270-11277, 2010.
    G. Pfurtscheller and F. L. Da Silva,“Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clinical neurophysiology, vol. 110, no. 11, pp. 1842-1857, 1999.
    T. M. Inc.“Signal Processing Toolbox: 7.8 (R2021b).” https://www.mathworks.com (accessed 2025).
    G. Pfurtscheller and A. Aranibar,“Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement,” Electroencephalography and clinical neurophysiology, vol. 46, no. 2, pp. 138-146, 1979.
    P. Fries,“A mechanism for cognitive dynamics: neuronal communication through neuronal coherence,” Trends in cognitive sciences, vol. 9, no. 10, pp. 474-480, 2005.
    H. C. Dijkerman and E. H. De Haan,“Somatosensory processing subserving perception and action: Dissociations, interactions, and integration,” Behavioral and brain sciences, vol. 30, no. 2, pp. 224-230, 2007.
    O. Jakobs et al.,“Across-study and within-subject functional connectivity of a right temporo-parietal junction subregion involved in stimulus–context integration,” Neuroimage, vol. 60, no. 4, pp. 2389-2398, 2012.
    E. Koechlin and T. Jubault,“Broca's area and the hierarchical organization of human behavior,” Neuron, vol. 50, no. 6, pp. 963-974, 2006.
    J. Driver and T. Noesselt,“Multisensory interplay reveals crossmodal influences on ‘sensory-specific’brain regions, neural responses, and judgments,” Neuron, vol. 57, no. 1, pp. 11-23, 2008.
    P. Molenberghs, R. Cunnington, and J. B. Mattingley “Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies,” Neuroscience & biobehavioral reviews, vol. 36, no. 1, pp. 341-349, 2012.
    M. Mohammadzadeh, A. H. Khoshakhlagh, and J. Grafman,“Air pollution: a latent 96 key driving force of dementia,” BMC public health, vol. 24, no. 1, p. 2370, 2024.
    J. W. Krakauer and R. Shadmehr,“Consolidation of motor memory,” Trends in neurosciences, vol. 29, no. 1, pp. 58-64, 2006.
    R. J. Morecraft and J. Tanji,“Cingulofrontal interactions and the cingulate motor areas,” Cingulate neurobiology and disease, pp. 113-144, 2009.
    M. Colomer et al.,“Action experience in infancy predicts visual‐motor functional connectivity during action anticipation,” Developmental Science, vol. 26, no. 3, p. e13339, 2023.
    Y.-C. Chen, Y.-Y. Tsai, G.-C. Chang, and I.-S. Hwang,“Cortical reorganization to improve dynamic balance control with error amplification feedback,” Journal of NeuroEngineering and Rehabilitation, vol. 19, no. 1, p. 3, 2022.
    C. Campus et al.,“Tactile exploration of virtual objects for blind and sighted people: the role of beta 1 EEG band in sensory substitution and supramodal mental mapping,” Journal of Neurophysiology, vol. 107, no. 10, pp. 2713-2729, 2012.

    無法下載圖示 校內:2030-06-19公開
    校外:2030-06-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE