簡易檢索 / 詳目顯示

研究生: 李濟宇
Li, Ji-yu
論文名稱: 使用多層式決策法則探勘方法之個人行為辨識系統開發
Development of Personalized Activity Recognition System Using Multi-level Decision Rule Mining Approach
指導教授: 郭耀煌
Kuo, Yao-huang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 72
中文關鍵詞: 行為辨識資料探勘序列探測
外文關鍵詞: Activity Recognition, Sequential Detection, Data Mining
相關次數: 點閱:146下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來在情境感知系統逐漸發展之下,許多相關議題包括如何蒐集環境中資料以及如何轉換這些未經過處理的資料成為有用的情境感測資訊也備受關注。而這些未經過處理的資料可以經由邏輯的隱含推論或關聯法則的推理之下成為在情境感知系統中可用的情境感測資訊。在此篇論文中提出了多層式的模型以建構符合個人化行為辨識系統。首先透過無順序關係的關聯法則資料探勘方式從使用者的歷史活動資料庫中尋找使用者個人風格並建立出個人化的活動推論決策法則。接著再經由這些建立出來的活動推論決策法則辨識使用者進行長時間行為期間所包含的活動序列。藉由對活動序列探測分析與比對後將使用者的行為模式作歸納,並且從其中推理出使用者的個人行為習慣且建立出個人化行為推論決策法則。最後則是經由個人化行為推論決策法則來辨識並測試是否可以準確辨識出使用者所進行的行為。因此相較於現今許多情境感知系統中的決策法則皆是系統設計者或領域專家所建立,此系統是透過發掘使用者的行為與活動風格所建立的決策法則更能適用於每一位使用者。有別於一般的行為辨識系統,在此系統中所採納的情境感測資訊來源為各種環境中所佈置之裝置與感應器而不是由監視器與攝影機所拍攝錄製的影像畫面。而透過模擬實驗的分析,系統在20%雜訊的干擾下所建立出的個人化行為決策法則也能夠有83.33%的辨識準確率。

    In recent years, development of context-aware system is focusing on how to collect raw data sensed from environment and combine these raw data to form some
    useful information. According to logic implicit inferences and association rules between these raw data, high-level context information can be generated. In this thesis, a three-layer hierarchical system is proposed to generate personalization rules for action and activity recognition. Multi-level decision rule mining approach in our system not only discovers personal habit of device using, but also finds personal pattern of devices operation manner. First, this system processes association mining of data mining procedure, which mines from user’s database of historical action and constructs rules for recognizing actions. Second, it creates action sequence recognized by using action rules generated before. Sequential detection method is adopted to find out the most frequent sequential pattern which is seemed as personal activity habit of device operating manner. Finally, these non-sequential rules and sequential patterns are checked in order to recognize user’s personal activity. The three-layered hierarchical model generates rules according user’s habit rather than being specified by designer who only creates a general rule set. Therefore, it can build different rules which fit for different users, and provide personalized activity recognition rules. And the simulation results reveal that the activity recognition accuracy with noise rate 20% interference is 83.33%.

    LIST OF TABLES .............................................................................................................................. XI LIST OF FIGURES ........................................................................................................................... XII 1. CHAPTER 1 INTRODUCTION .................................................................................................... 1 1.1 MOTIVATION ..................................................................................................................................... 1 1.2 CONTRIBUTION .................................................................................................................................. 3 1.3 THESIS ORGANIZATION ......................................................................................................................... 5 2. CHAPTER 2 BACKGROUND AND RELATED WORK ..................................................................... 6 2.1 SURVEY OF ACTION AND ACTIVITY RECOGNITION ....................................................................................... 6 2.1.1 Actions and Activities ............................................................................................................. 6 2.1.2 Activity Recognition System ................................................................................................... 8 2.2 ASSOCIATION RULE MINING .................................................................................................................. 9 2.2.1 The Rule Model of Data Mining ............................................................................................. 9 2.2.2 The Rule Model of Association Mining ................................................................................. 11 2.3 SURVEY OF SEQUENTIAL RECOGNITION .................................................................................................. 14 2.3.1 Sequential Pattern Detection ............................................................................................... 14 2.3.2 Activity Recognition Systems based on Sequential Detection .............................................. 16 3. CHAPTER 3 HIERARCHICAL ACTIVITY RECOGNITION MODEL .................................................. 18 3.1 ELEMENTS OF CONDITION LAYER .......................................................................................................... 19 3.2 ELEMENTS OF ACTION LAYER ............................................................................................................... 26 3.3 ELEMENTS OF ACTIVITY LAYER ............................................................................................................. 30 4. CHAPTER 4 ADAPTIVE ACTIVITY RECOGNITION RULE MINING ................................................ 33 4.1 PROBLEM FORMULATION.................................................................................................................... 35 4.2. ACTION RULE MINING ...................................................................................................................... 38 4.2.1 Find all frequent Condition Sets ........................................................................................... 39 4.2.2 Search for significant Condition Sets .................................................................................... 44 4.3 ACTIVITY RULE MINING ...................................................................................................................... 47 4.3.1 Construct length table .......................................................................................................... 48 4.3.2 Backtrack common Actions .................................................................................................. 51 5. CHAPTER 5 SIMULATION ....................................................................................................... 54 5.1 SIMULATION ENVIRONMENT ............................................................................................................... 54 5.2 SIMULATION RESULTS ........................................................................................................................ 58 5.2.1 Simulation 1: SN ................................................................................................................... 59 X 5.2.2 Simulation 2: AN .................................................................................................................. 60 5.2.3 Simulation 3: PN ................................................................................................................... 61 6. CHAPTER 6 CONCLUSIONS AND FUTURE WORK ..................................................................... 66 6.1 CONCLUSIONS ................................................................................................................................. 66 6.2 FUTURE WORK ................................................................................................................................ 67 REFERENCES ................................................................................................................................. 68

    [AIS93] R. Agrawal, T. Imielinski, and A.N. Swami, “Mining Association Rules
    between Sets and Items in Large Database,” Proceedings of the ACM
    International Conference on Management of Data, pp. 207-216, 1993.
    [BEC04] M.Y. Becker, and P. Sewell, “Cassandra: Distributed Access control
    Policies with Tunable Expressiveness,” 5th IEEE Policy Workshop, New
    York, June 2004.
    [BER04] World Wide Web Consortium Semantic Web Activity, available:
    http://www.w3.org/RDF/
    [BOB01] A. F. Bobick and J. W. Davis, “The Recognition of Human Movement
    using Temporal Templates,” IEEE Transaction Pattern Analysis and
    Machine Intelligence, Vol.23, No.3, pp.257-267, Mar 2001.
    [BRI77] S. Brin, R. Motwani, and C. Silverstein, “Beyond Market Baskets:
    Generalization Association Rules to Correlation,” Proceeding of the ACM
    International Conference on Management of Data, pp. 265-276, 1977.
    [BU06] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, and J. Lu, “Managing Quality of
    Context in Pervasive Computing,” Proceeding of the 6th International
    Conference on Quality Software, Beijing, China, Oct 2006.
    [CHE04] H. Chen, “An Intelligent Broker Architecture for Pervasive Context-Aware
    Systems,” PhD Thesis, University of Maryland, pp.19-30, 2004.
    [DUN03] M.H. Dunham, “Data Mining Introductory and Advanced Topics,” Prentice
    Hall/Pearson Education Incorporation, New Jersey, 2003.
    [GOE04] B. Goethals, “Memory Issues in Frequent Itemset Mining,” Proceeding of
    the ACM Symposium on Applied Computing, pp. 530-534, 2004.
    69
    [GOR08] O. Gornerup, M.N. Jacobi, “A Method for Inferring Hierarchical Dynamics
    in Stochastic Processes,” Advances in Complex Systems (ACS), Vol. 11, pp.
    1-16, 2008.
    [EDE99] H.A. Edelstein, “Introduction to Data Mining and Knowledge Discovery,
    3rd Edition,” Two Crows Corporation, Oct 1999.
    [HON00] S. Hongeng, F. Brémond, and R. Nevatia, “Bayesian Framework for Video
    Surveillance Application,” 15th International Conference on Pattern
    Recognition (ICPR), Vol. 1, pp.164-170, 2000.
    [LI08] S.S. Li, “Human Activity Pattern Mining and Recognition by Sequence
    Alignment algorithm,” Master Thesis, University of National Cheng Kung
    University, pp.10-19, 2008.
    [LIA09] Y.M. Liang, S.W. Shih, A.C.C. Shih, H.Y.M. Liao, and C.C. Lin, “Learning
    Atomic Human Actions using Variable-Length Markov Models,” IEEE
    Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol.
    39, No.1, pp. 268-280, Feb 2009.
    [LIN05] X. Lin, S. Li, J. Xu, W. Shi, and Q. Gao, “An Efficient Context Modeling
    and Reasoning System in Pervasive Environment: Using Absolute and
    Relative Context Filtering technology,” International Conference on
    Advances in Web-age Information Management, Hangzhou, China, Nov
    2005.
    [MUN07]J. Muncaster and Y. Ma, “Hierarchical Model-Based Activity Recognition
    with Automatic Low-Level State Discovery,” Journal of Multimedia, Vol. 2,
    No. 5, pp.66-75, Sep 2007.
    70
    [NEJ05] W. Nejdl, D. Olmedilla, M. Winslett, and C.C. Zhang, “Ontology-Based
    Policy Specification and Management,” 2nd European Semantic Web
    Conference (ESWC), Lecture Notes in Computer Science, Heraklion,
    Greece, May 2005.
    [RYO06] M.S. Ryoo and J.K. Aggarwal, “Recognition of Composite Human
    Activities through Context-Free Grammar based Representation,” IEEE
    Conference on Computer Vision and Pattern Recognition (CVPR), New
    York, NY, June 2006.
    [RUI99] Y. Rui, T.S. Huang, and S.F. Chang, “Image retrieval: Current techniques,
    promising directions and open issues,” Journal of Visual Communication
    and Image Representation, Vol. 10, No. 4, pp. 39-62, 1999.
    [SRI04] N. Srinaree, T. Senivongse, K. Verma, and A.P. Sheth, “On Using
    WS-policy, Ontology, and Rule Reasoning to discover Web Services,” IFIP
    International Conference on Intelligence in Communication Systems,
    Bangkok, Thailand, Nov 2004.
    [TUR08] P. Turaga, R. Chellappa, V.S. Subrahmanian, and O. Udrea, “Machine
    Recognition of Human Activities: A Survey,” IEEE Transactions on
    Circuits and Systems for Video Technology, pp. 1473-1488, 2008.
    [WAD00] T. Wada and T. Matsuyama, “Multiobject Behavior Recognition by Event
    Driven Selective Attention Method,” IEEE Transaction of Pattern Analysis
    and Machine Intelligence, Vol. 22, No. 8, pp. 873-887, Aug, 2000.
    [ZAK00] M.J. Zaki, “Scalable Algorithms for Association Mining,” IEEE
    Transaction on Knowledge and Data Engineering, Vol. 12, No. 3, pp.
    372-390, May/June 2000.
    71
    [ZHA08] W. Zhang, F. Chen, W. Xu, Y. Du, “Hierarchical Group Process
    Representation in Multi-agent Activity Recognition,” Signal Processing:
    Image Communication, Vol. 23, pp.739-753, Nov, 2008.

    下載圖示
    2010-08-25公開
    QR CODE