| 研究生: |
曾郁翔 Tseng, Yu-Shiang |
|---|---|
| 論文名稱: |
Sr 晶格空缺對SrSi2熱電性質之影響 Effects of lattice vacancies on the thermoelectric performance of SrSi2 |
| 指導教授: |
呂欽山
Lue, Chin-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 矽化物 、熱電材料 、晶格空缺 |
| 外文關鍵詞: | Lattice vacancy, SrSi2 |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文是研究Sr的晶格空缺對SrSi2熱電性質的影響,我們以Ba、Ca摻雜SrSi2,測量10K~300K溫度下, 有Sr晶格空缺之SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)與SrxCa0.1Si2 (x =0.9、0.83、0.77、0.7)合金的電阻率、熱導率以及Seebeck coefficient,並計算出熱電優質(figure of merit)ZT。我們發現在室溫下SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)和SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)的電阻率和Seebeck coefficient都隨著Sr的晶格空缺增加而相對減少,而在熱導率方面,Ba摻雜的熱導率隨著Sr晶格空缺的增加而增加,但是Ca摻雜的合金熱導率卻隨著Sr晶格空缺的增加有顯著減少,在Ca摻雜的部分,SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)在x = 0.77時有最低的熱導率κ = 1.66(W/m K)左右,我們期待在這個系列SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)使Sr晶格缺陷增加造成聲子與晶格無序散射效應增強,如此使熱導率κ下降,而實驗數據顯示SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)在x = 0.77時,ZT值比在室溫中沒有Sr晶格空缺的Sr0.9Ca0.1Si2大了兩倍,約為0.27左右。
We report a study of the temperature-dependent electrical resistivity, Seebeck coefficient, and thermal conductivity in the SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)and SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7) alloys to elucidate the vacancy effect on the thermoelectric performance, characterized by the figure-of-merit, ZT. The room-temperature electrical resistivity and Seebeck coefficient were found to decrease through the introduction of vacancies onto the Sr sites of SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)and SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7). Though, the room temperature thermal conductivity of Sr0.9Ba0.1Si2 increases with more lattice vacancies. It is of great importance that the room-temperature thermal conductivity of these samples substantially reduces upon introducing vacancies. Such a promising result leads to a significant enhancement in the ZT value as compared to the non-vacancy compound Sr0.9Ca0.1Si2. Namely, the highest room-temperature ZT value of 0.27 was obtained for Sr0.77Ca0.1Si2, about two times larger than that of Sr0.9Ca0.1Si2.
1. Z.J. Chen1 and D.B. Tian2, J. Appl. Phys. 109, 033506 (2011).
2. M. Imai and T. Kikegawa, Chem. Mater. 15,2543 (2003).
3. C. Kittel, Introduction to Solid Physics,7th ed. New York: Wiley, (1996).Ch.4-6.
4. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction,3rd ed. New Jersey: Prentice Hall, (2001).
5. V.E. Borisenko, Semiconducting silicides, Medicine:Springer, (2000).
6. D. Leong, M. Harry, K.J. Reeson, K.P. Homewood. Nature. 387, 686 (1997)
7. T.Nakamura, T.Suemasu, K. Takakura, F. Hasegawa, A. Wakahara, M. Imai, Appl Phys Lett.81,1032 (2002).
8. F.J. Disalvo, Science. 285, 703 (1999).
9. C. S. Lue1, M.D. Chou, N. Kaurav, Y.T. Chung, and Y.K. Kuo, Appl. Phys. Lett. 94, 192105 (2009).
10. M. Imai, T. Nakal, H. Abe, and T. Furubayashi, Intermetallics 15, 956-960 (2007).
11. M. Imai,A. Sato,T. Kimura, and T. Aoyagi, Thin Solid Films 519, 8496 (2011).
12. G.J. Hsu (2008), Effects of Al substitution on the transport properties of SrSi2, NCKU, Department of Physics.
13. M. Imai, T. Naka, T. Furubayashi, H. Abe, T. Nakama, and K. Yagasaki, Appl. Phys. Lett. 86, 032102 (2005).
14. J. Evers, J. Solid State Chem. 24, 199 (1978).
15. Y, Imai and Aiko Watanabe, Intermetallics. 14, 666 (2006).
16. K. Hashimoto, K. Kurosaki, Y. Imamura, H. Muta, and S. Yamanaka, J. Appl. Phys. 102, 063703 (2007).
17. D.M. Rowe, CRC Handbook of THERMOELECTRICS. New York:CRC press, (1995). 489-492.
18. V.K. Zaitsev, M. I. Fedorov, E. A. Gurieva, I. S. Eremin, P. P. Konstantinov, A. Yu. Sarmunin, and M. V. Vedernikov, Phys. Rev. B. 74, 045207 (2006).
19. S.F. Wong (2012), Chemical pressure effect on the thermoelectric properties of SrSi2, NCKU, Department of Physics.
20. T. M. Tritt, M. Kanatzidis, H. B. Lyon, and G. Mahan, Jr., MRS Proceedings (Material Research Society, Pittsburgh, 1997), 478.
21. Silicides:Fundamentals and Applications, edited by L. Miglio and M. d’Heurle(World Scientific, Singapore, 2000).
22. C.S. Lue, Y.K. Kuo, C.L. Huang, and W. J. Lai, Phys. Rev. B 69, 125111 (2004).
23. Y.K. Kuo, K. M. Sivakumar, S.J. Huang, and C.S. Lue, J. Appl. Phys. 98, 123510 (2005).
24. C.S. Lue, P.C. Fang, A. C. Abhyanka, J. W. Lin, H. W. Lee, C. M. Chang, and Y.K. Kuo, Intermetallics 19, 1448 (2011).
25. Y. Imai, and A. Watanabe, Intermetallics 10, 333 (2002).
26. Y. Imai, and A. Watanabe, Intermetallics 14, 666 (2006).
27. P.G. Klemens, Proc. Phys. Soc., London, Sect. A 68, 1113 (1959).
28. H. Scherrer and S. Scherrer, in CRC Handbook of Thermoelectrics, edited by D. M. Rowe (CRC, Boca Raton, FL, 1995), p. 211.
29. P. Ehrhart, "Properties and interactions of atomic defects in metals and alloys", volume 25 of Landolt-Börnstein, New Series III, ch. 2, p. 88, Springer, Berlin, 1991.
30. R. W. Siegel, Vacancy concentrations in metals, J. Nucl. Mater. 69 and 70, 117 (1978).
31. A. R. Denton and N. W. Ashcroft. Vegard’s law. Phys. Rev. A, 43:3161–3164, March (1991).
32. A. Seeger, Crystal Lattice Defects 4, 221 (1973).
33. K. Differt, A. Seeger, and W. Trost, Mater. Sci. Forum 15/18, 99 (1987).
34.H. E. Schaefer, in :Positron Annihilation, Ed. P. G. Coleman, S. C. Sharma, and L. M. Diana, North Holland Publ. Co., Amsterdam (1982).
35.K. Maier, M. Peo, B. Saile, H. E. Schaefer, and A. Seeger, Phil. Mag. A40, 701 (1979).
36. D.N. Seidmann and R.W.Balluffi, Phys. Rev. A 139, 1824 (1965).
37. K. Ono and T. Kino, J. Phys. Soc. Japan 44, 875 (1973).
39.J. N. Mundy, S. T. Ockers, and L. C. Smedskjaer, Mater. Sci Forum , 199 (1987).
40.A. Seeger, Appl. Phys. 4, 183 (1974).
41. R. N. West: Adv. Physics 22,263 (1973).
42.A. T. Stewart: In: Positron Annihilation, ed. by A. T. Stewart and L.O.Roelling(Academic Press, New York, London 1967), p17.
43. T. Hirano, J. Less-Common Met. 167, 329 (1991).
44.K. Seeger, Semiconductor Physics, 5th ed. (1991).
45. F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).
46. T. M. Tritt, Science 283, 804 (1999).
47.S. Brutti, D. N. Manh, and D. G. Pettifor, Intermetallics 14, 1472 (2006).
48.J. Evers and A. Weiss, Mater. Res. Bull. 9,549 (1974).
49. S. Saha, T. P. Sinha, and A. Mookerjee, Phys. Rev. B 62, 8828 (2000).
50. G. Grimvall, Thermophysical Properties of Material (1956).
51. B. Hammer, L. B. Hansen, and J. K. Norskov, Phys. Rev. B 59, 7413 (1999).
52. A. W. Lawson, Phys. Chem. Solids, 3,155. (1957)
53. C. J. Glassbrenner and G. A. Slack, Phys. Rev., 134, 1058. (1964)
54. W. D. Kingery, J. Am. Ceram. Soc., 38,251. (1955)