簡易檢索 / 詳目顯示

研究生: 曾郁翔
Tseng, Yu-Shiang
論文名稱: Sr 晶格空缺對SrSi2熱電性質之影響
Effects of lattice vacancies on the thermoelectric performance of SrSi2
指導教授: 呂欽山
Lue, Chin-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 矽化物熱電材料晶格空缺
外文關鍵詞: Lattice vacancy, SrSi2
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是研究Sr的晶格空缺對SrSi2熱電性質的影響,我們以Ba、Ca摻雜SrSi2,測量10K~300K溫度下, 有Sr晶格空缺之SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)與SrxCa0.1Si2 (x =0.9、0.83、0.77、0.7)合金的電阻率、熱導率以及Seebeck coefficient,並計算出熱電優質(figure of merit)ZT。我們發現在室溫下SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)和SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)的電阻率和Seebeck coefficient都隨著Sr的晶格空缺增加而相對減少,而在熱導率方面,Ba摻雜的熱導率隨著Sr晶格空缺的增加而增加,但是Ca摻雜的合金熱導率卻隨著Sr晶格空缺的增加有顯著減少,在Ca摻雜的部分,SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)在x = 0.77時有最低的熱導率κ = 1.66(W/m K)左右,我們期待在這個系列SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)使Sr晶格缺陷增加造成聲子與晶格無序散射效應增強,如此使熱導率κ下降,而實驗數據顯示SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)在x = 0.77時,ZT值比在室溫中沒有Sr晶格空缺的Sr0.9Ca0.1Si2大了兩倍,約為0.27左右。

    We report a study of the temperature-dependent electrical resistivity, Seebeck coefficient, and thermal conductivity in the SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)and SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7) alloys to elucidate the vacancy effect on the thermoelectric performance, characterized by the figure-of-merit, ZT. The room-temperature electrical resistivity and Seebeck coefficient were found to decrease through the introduction of vacancies onto the Sr sites of SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)and SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7). Though, the room temperature thermal conductivity of Sr0.9Ba0.1Si2 increases with more lattice vacancies. It is of great importance that the room-temperature thermal conductivity of these samples substantially reduces upon introducing vacancies. Such a promising result leads to a significant enhancement in the ZT value as compared to the non-vacancy compound Sr0.9Ca0.1Si2. Namely, the highest room-temperature ZT value of 0.27 was obtained for Sr0.77Ca0.1Si2, about two times larger than that of Sr0.9Ca0.1Si2.

    第一章 前言 1 1-1 熱電材料簡介 1-2 矽化物SrSi2簡介 1-3 膺能隙 1-4 研究動機 第二章 基礎理論 15 2-1 電傳導率(Electric conductivity) 2-2 熱傳導率(Thermal conductivity) 2-3 倒逆過程(Umklapp process) 2-4 晶格空缺(Lattice vacancy) 2-5 Seebeck coefficient 2-6 熱電優值ZT(Figure of merit) 第三章 樣品製備與量測 33 3-1 樣品製作過程 3-2 樣品物性參數量測 3-2.1 X-ray量測 3-2.2 電阻率量測 3-2.3 熱傳導率量測 3-2.4 Seebeck coefficient量測 第四章 結果與數據討論分析 40 4-1 X-ray分析 4-2 電阻率量測結果 4-3 熱導率與溫度關係 4-4 Seebeck coefficient與溫度關係 4-5 熱電優質ZT(figure of merit)結果分析 第五章 結論 57 參考文獻 61 圖目錄 圖1-1 SrSi2晶格結構 2 圖1-2 SrSi2個軌域態密度圖1 4 圖1-3 外加壓力對SrSi2電阻值的影響10 5 圖1-4 外加壓力對SrSi2能隙的影響10 5 圖1-5 Sr1-xBaxSi2對單位晶格體積變化關係圖11 6 圖1-6 Sr1-xBaxSi2能隙對單位體積變化關係圖11 6 圖1-7 SrAlxSi2-x晶格常數與X-ray晶格繞射圖17 7 圖1-8 SrAlxSi2-x 電阻率、熱導率、Seebeck coefficient與ZT值對溫度關係圖17 8 圖1-9 Sr1-xYxSi2晶格常數及X-ray晶格繞射圖9 9 圖1-10 Sr1-xYxSi2電阻率、熱導率、Seebeck coefficient與ZT值對溫度關係圖9 10 圖1-11 Sr1-xCaxSi2、Sr1-xBaxSi2 X-ray晶格繞射圖19 11 圖1-12 Sr1-xCaxSi2、Sr1-xBaxSi2之晶格常數19 12 圖1-13 Sr1-xCaxSi2、Sr1-xBaxSi2之電阻率對溫度關係圖19 12 圖1-14 Sr1-xCaxSi2、Sr1-xBaxSi2之熱導率對溫度關係圖19 12 圖1-15 Sr1-xCaxSi2、Sr1-xBaxSi2之Seebeck coefficient對溫度關係圖19 13 圖1-16 Sr1-xCaxSi2、Sr1-xBaxSi2之Seebeck coefficient對溫度關係圖19 13 圖2-1熱傳導聲子碰撞過程 22 圖2-2 材料熱導率對溫度關係圖 24 圖2-3 Seebeck效應迴路示意圖 30 圖3-1四點探針測量法(four-point probe method) 36 圖3-2 樣品熱導率量測示意圖 38 圖4-1 SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)X-ray繞射圖 40 圖4-2 SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)X-ray繞射圖 41 圖4-3 SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)缺陷濃度與晶格常數關係圖 42 圖4-4 SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)缺陷濃度與晶格常數關係圖 43 圖4-5 SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)電阻率對溫度關係圖 45 圖4-6 SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)電阻率對溫度關係圖 45 圖4-7 SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)熱導率對溫度關係圖 46 圖4-8 SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)熱導率對溫度關係圖 47 圖4-9 SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)電子熱導與聲子熱導對溫度關係 48-49 圖4-10 SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)電子熱導與聲子熱導對溫度關係 50-51 圖4-11Sr0.9Ca0.1Si2 與Sr0.77Ca0.1Si2 熱導率比較圖 52 圖4-12 SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)Seebeck coefficient對溫度關係圖 53 圖4-13 SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)Seebeck coefficient對溫度關係圖 54 圖4-14 SrxBa0.1Si2 (x = 0.9、0.83、0.77、0.7)ZT值對溫度關係圖 56 圖4-15 SrxCa0.1Si2 (x = 0.9、0.83、0.77、0.7)ZT值對溫度關係圖 56 圖5-1 SrxCa0.1Si2高溫熱電參數估算值 59

    1. Z.J. Chen1 and D.B. Tian2, J. Appl. Phys. 109, 033506 (2011).
    2. M. Imai and T. Kikegawa, Chem. Mater. 15,2543 (2003).
    3. C. Kittel, Introduction to Solid Physics,7th ed. New York: Wiley, (1996).Ch.4-6.
    4. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction,3rd ed. New Jersey: Prentice Hall, (2001).
    5. V.E. Borisenko, Semiconducting silicides, Medicine:Springer, (2000).
    6. D. Leong, M. Harry, K.J. Reeson, K.P. Homewood. Nature. 387, 686 (1997)
    7. T.Nakamura, T.Suemasu, K. Takakura, F. Hasegawa, A. Wakahara, M. Imai, Appl Phys Lett.81,1032 (2002).
    8. F.J. Disalvo, Science. 285, 703 (1999).
    9. C. S. Lue1, M.D. Chou, N. Kaurav, Y.T. Chung, and Y.K. Kuo, Appl. Phys. Lett. 94, 192105 (2009).
    10. M. Imai, T. Nakal, H. Abe, and T. Furubayashi, Intermetallics 15, 956-960 (2007).
    11. M. Imai,A. Sato,T. Kimura, and T. Aoyagi, Thin Solid Films 519, 8496 (2011).
    12. G.J. Hsu (2008), Effects of Al substitution on the transport properties of SrSi2, NCKU, Department of Physics.
    13. M. Imai, T. Naka, T. Furubayashi, H. Abe, T. Nakama, and K. Yagasaki, Appl. Phys. Lett. 86, 032102 (2005).
    14. J. Evers, J. Solid State Chem. 24, 199 (1978).
    15. Y, Imai and Aiko Watanabe, Intermetallics. 14, 666 (2006).
    16. K. Hashimoto, K. Kurosaki, Y. Imamura, H. Muta, and S. Yamanaka, J. Appl. Phys. 102, 063703 (2007).
    17. D.M. Rowe, CRC Handbook of THERMOELECTRICS. New York:CRC press, (1995). 489-492.
    18. V.K. Zaitsev, M. I. Fedorov, E. A. Gurieva, I. S. Eremin, P. P. Konstantinov, A. Yu. Sarmunin, and M. V. Vedernikov, Phys. Rev. B. 74, 045207 (2006).
    19. S.F. Wong (2012), Chemical pressure effect on the thermoelectric properties of SrSi2, NCKU, Department of Physics.
    20. T. M. Tritt, M. Kanatzidis, H. B. Lyon, and G. Mahan, Jr., MRS Proceedings (Material Research Society, Pittsburgh, 1997), 478.
    21. Silicides:Fundamentals and Applications, edited by L. Miglio and M. d’Heurle(World Scientific, Singapore, 2000).
    22. C.S. Lue, Y.K. Kuo, C.L. Huang, and W. J. Lai, Phys. Rev. B 69, 125111 (2004).
    23. Y.K. Kuo, K. M. Sivakumar, S.J. Huang, and C.S. Lue, J. Appl. Phys. 98, 123510 (2005).
    24. C.S. Lue, P.C. Fang, A. C. Abhyanka, J. W. Lin, H. W. Lee, C. M. Chang, and Y.K. Kuo, Intermetallics 19, 1448 (2011).
    25. Y. Imai, and A. Watanabe, Intermetallics 10, 333 (2002).
    26. Y. Imai, and A. Watanabe, Intermetallics 14, 666 (2006).
    27. P.G. Klemens, Proc. Phys. Soc., London, Sect. A 68, 1113 (1959).
    28. H. Scherrer and S. Scherrer, in CRC Handbook of Thermoelectrics, edited by D. M. Rowe (CRC, Boca Raton, FL, 1995), p. 211.
    29. P. Ehrhart, "Properties and interactions of atomic defects in metals and alloys", volume 25 of Landolt-Börnstein, New Series III, ch. 2, p. 88, Springer, Berlin, 1991.
    30. R. W. Siegel, Vacancy concentrations in metals, J. Nucl. Mater. 69 and 70, 117 (1978).
    31. A. R. Denton and N. W. Ashcroft. Vegard’s law. Phys. Rev. A, 43:3161–3164, March (1991).
    32. A. Seeger, Crystal Lattice Defects 4, 221 (1973).
    33. K. Differt, A. Seeger, and W. Trost, Mater. Sci. Forum 15/18, 99 (1987).
    34.H. E. Schaefer, in :Positron Annihilation, Ed. P. G. Coleman, S. C. Sharma, and L. M. Diana, North Holland Publ. Co., Amsterdam (1982).
    35.K. Maier, M. Peo, B. Saile, H. E. Schaefer, and A. Seeger, Phil. Mag. A40, 701 (1979).
    36. D.N. Seidmann and R.W.Balluffi, Phys. Rev. A 139, 1824 (1965).
    37. K. Ono and T. Kino, J. Phys. Soc. Japan 44, 875 (1973).
    39.J. N. Mundy, S. T. Ockers, and L. C. Smedskjaer, Mater. Sci Forum , 199 (1987).
    40.A. Seeger, Appl. Phys. 4, 183 (1974).
    41. R. N. West: Adv. Physics 22,263 (1973).
    42.A. T. Stewart: In: Positron Annihilation, ed. by A. T. Stewart and L.O.Roelling(Academic Press, New York, London 1967), p17.
    43. T. Hirano, J. Less-Common Met. 167, 329 (1991).
    44.K. Seeger, Semiconductor Physics, 5th ed. (1991).
    45. F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).
    46. T. M. Tritt, Science 283, 804 (1999).
    47.S. Brutti, D. N. Manh, and D. G. Pettifor, Intermetallics 14, 1472 (2006).
    48.J. Evers and A. Weiss, Mater. Res. Bull. 9,549 (1974).
    49. S. Saha, T. P. Sinha, and A. Mookerjee, Phys. Rev. B 62, 8828 (2000).
    50. G. Grimvall, Thermophysical Properties of Material (1956).
    51. B. Hammer, L. B. Hansen, and J. K. Norskov, Phys. Rev. B 59, 7413 (1999).
    52. A. W. Lawson, Phys. Chem. Solids, 3,155. (1957)
    53. C. J. Glassbrenner and G. A. Slack, Phys. Rev., 134, 1058. (1964)
    54. W. D. Kingery, J. Am. Ceram. Soc., 38,251. (1955)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE