| 研究生: |
陳俊燊 Chang, jun-sheng |
|---|---|
| 論文名稱: |
多孔噴嘴在漩渦效應及旁通氣流作用下之霧化特性 Effects of swirling and Bypass flow on atomization performance of Multiple-Orifice Atomizers |
| 指導教授: |
王覺寬
Wang, Muh-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 水霧化 、渦漩 、旁通氣流 |
| 外文關鍵詞: | atomization, swirler, bypass flow |
| 相關次數: | 點閱:60 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討氣助式多孔噴嘴之霧化特性,並探討旁通氣流與漩渦長度對霧化特性之影響。噴嘴孔數分為十二孔、十四孔及十六孔等三種,旁通氣流之位置分別離噴口L=5mm及L=9.6mm。漩渦長度分別為10mm、20mm及30mm等三種。多孔噴嘴之孔口直徑為0.4~0.8mm,採用漸縮式奇點結構設計,孔距為3.5~5.0mm。本實驗以Malvern RT-sizer粒徑分析儀量測噴霧粒徑。
研究結果顯示,多孔噴嘴之孔數為噴霧產生量之控制參數。在霧化氣體壓力6.0bar,水壓5.2bar條件下,噴嘴孔數為十二孔、十四孔及十六孔時,其噴霧產生量分別為34.80kg/hr、36.60kg/hr及43.20kg/hr,相當於每一孔之平均噴霧產生量為2.7kg/hr,而且其噴霧粒徑並未隨孔數增加有太大之變化,故知此型噴嘴具有控制噴霧產生量之優越機制。研究結果亦顯示,噴嘴若配置旁通氣流時,會促使氣液兩相在噴嘴內產生充分之混合現象,故在相同之霧化氣體流量下,其噴霧平均粒徑有顯著之改善,代表以旁通氣流輔助霧化,具有比主氣流更佳之效果。若漩渦長度由10mm增加至30mm時,其噴霧錐角由18度減少至8度,故知漩渦長度具有控制噴霧錐角之機制。此外,改變多孔噴頭之孔徑及孔距,亦具有控制噴霧粒徑及錐角,例如,當霧化氣體壓力為6.0bar時,若多孔噴頭未做改變時孔徑為Φ0.8mm時,十四孔噴霧所產生之噴霧平均粒徑為6.13μm,若孔徑為Φ0.4mm時,其噴霧平均粒徑進一步降低為4.15μm。多孔噴頭孔距之改變亦影響噴霧之特性,例如,當孔距為3.5mm時,十四孔之噴霧錐角為12度,若多孔噴頭孔距增加至5.0mm時,其噴霧錐角則增加為15度,故多孔噴頭亦可以改變孔徑及孔距來控制其噴霧之特性。
The atomization performance of an air-assist atomizer with multiple orifices is investigated in this research program. There are 12 ,14 and 16 orifices at the nozzle outlet. The orifices of the nozzle are designed as the singularity configuration with 0.4~0.8 mm in diameter. The separation distances of the orifices were 3.5~5.0mm, respectively. The swirlers inside the atomizer have the length of 10mm , 20mm and 30mm. The atomizer was also designed with the bypass flow configuration. The inlet of the bypass flow located at 5mm and 9.6mm from the nozzle outlet. The particle size of the spray is measured by Malvern RT-sizer.
Results show that the production rate of the spray can be adjusted by changing the number of the orifices because the liquid flow rate is proportional to the umber of orifices. For example, under test condition of (Pa, Pw)=(6.0, 5.2), the liquid flow rates are 34.80kg/hr, 36.60kg/hr and 43.20kg/hr when the numbers of orifices are 12 , 14 and 16, respectively. It turns out that the average liquid flow rate of each orifice is around 2.70kg/hr. What is more important is that the particle size of the sprays does not vary with the change in orifice number. Results also show that the atomizer with bypass flow configuration performed better. The mean particle size of the spray is reduced because of the enhanced mixing processes between the gas and liquid phases in the nozzle. Furthermore, the cone angle of the spray reduced from 18° to 8° when the length of the swirler was increased from 10mm to 30mm. The diameter of the orifice and the pitch between orifices also influence the particle size and cone angle of the spray. In a test of Pa=6.0, the cn14-nozzle produces spray of mean particle size of 6.13μm and 4.15μm as the orifices were designed with diameters of Φ0.4mm and Φ0.8mm, respectively. The cone angles of the spray changed from 12° to 15° when the pitch between the orifices changed from 3.5mm to 5.0mm. Hence the atomization performance of the multiple-orifice nozzle can be adjusted by changing the configuration of the orifices.
參考文獻
1.古晉光, 加濕工程應用手冊, 翰寧股份有限公司, pp.10-28, 2000.
2.A. H. Lefebvre, “Gas Turbine Combustion,” Chapter10, Hemisphere Publishing Corporation, New York, 1983.
3.A. H. Lefebvre, “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, 1989.
4.R. A. Castleman Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol.6, pp.369-376, 1930.
5.N. Dombrowski and W. R. Johns, ”The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol.18, pp.203-214, 1963.
6.B. E. Stapper, W. A. Sowa and G. S. Samuelsen, “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol.114, pp.39-45, 1992.
7.C.H. Lee, Rolf D. Reitz, “An experimental study of the effect of gas density on the distortion and breakup mechanism of dropsin high speed gas stream”, International Journal of Multiphase Flow 26(2000) 229-244.
8.R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium (International) on Combustion, Rein-hold, New York, pp.687-701, 1957.
9.P.C.H Miller, M.C. Butler Ellis, “Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers”, Crop Protection 19 (2000) 609-615.
10.G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D. Pyott, ”A Note on the Growth of Kelvin-Helmholtz Waves on Thin Liquid Sheets,” J. Fluid Mech., Vol.57, part 4, pp.671-672, 1973.
11.Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.7901/2-0, 1979.
12.Lefebvre, A. H., “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, 1989.
13.H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.8, pp.61-92, 1982.
14.許耀仁, “氣衝式平面噴嘴液膜霧化特性之研究,” 國立成功大學碩士論文, 1993.
15.高韶壕, “微型噴嘴單束噴霧流在側吹下之粒子分布,” 國立成功大學碩士論文, 2003.
16.蔡清洲, “漩渦噴流中氣液兩相交互作用實驗分析,” 國立成功大學碩士論文, 1989.
17.楊坤和, “研究型氣助式噴霧特性研究,” 國立成功大學博士論文, 1992.
18.賴維祥, “噴霧發展過程中粒子之輸送現象及其紊流條調制之研究,” 國立成功大學博士論文, 1995.
19.徐明生, “雙流體式平面噴嘴霧化特性之研究,” 國立成功大學碩士論文, 1995.
20.趙金容,“相差都卜勒粒子分析儀應用於燃油噴嘴特性之研究”, 國立成功大學碩士論文, 1988.
21.A. A. Rizkalla and A. H. Lefebvre, “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp.173-179, April 1975.
22.A. A. Rizkalla and A. H. Lefebvre, “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol.97, pp.316-320, 1975.
23.N. K. Rizk and A. H. Lefebvre, “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol.21, No.8, pp.1139-1142, 1983.
24.J. Beck, A. H. Lefebvre and T. Koblish, “Airblast Atomization at Conditions of Low Air Velocity,” Paper No, AIAA, 89-0217, 1989.
25.J. E. Beck, A. H. Lefebvre and T. R. Koblish, “Liquid Sheet Disintegration by Impinging Air Streams,” Atomization and Sprays, Vol.1, No.2, pp.155-170, 1991.
26.J. E. Beck and A. H. Lefebvre, “Airblast Atomization at Conditions of Low Air Velocity,” J. Propulsion, Vol.7, No.2, March-April 1991.
27.M. Aligner and S. Witting, “Swirl and Counterswirl Effects in Prefilming Airblast Atomization,” Trans. ASME, J. Eng. Power, Vol.102, pp.706-710, 1980.
28.T. Sattlemayer and S. Witting, “Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol.108, pp.465-472, 1986.
29.C. Press, A. K. Gupta and H. G. Semerjian, “Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer,” HTD, Vol.104, pp.111-119, 1988.
30.J. D. Whitlow and A. H. Lefebvre, “Effervescent Atomizer Operation and Spray Characteristics,” Atomization and Spray, Vol.3, pp.137-155, 1993.
31.王承光, “氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究,” 國立成功大學碩士論文, 1996.
32.S. K. Chen and A. H. Lefebvre, “Spray Cone Angles of Effervescent Atomizers,” Atomization and Spray, Vol.4, pp.291-301, 1994.
33.S. D. Sovani, P. E. Sojka and A. H. Lefebvre, “Effervescent Atomization,” Progress in Energy and Combustion Science, 1999.
34.B. Leroux, O. Delabroy and F. Lacas, “Influence of Superpulsating Mode on Atomization Properties in Coaxial Air-assisted Atomizers,” Eighth International Conference on Liquid Atomization and Spray Systems, July 2000.
35.A. Kufferath , B. Wende, W. Leuckel, “Influence of liquid flow condition onspray characteristics of internal-mixing twin-fluid atomizers,” International Journal of Heat and Fluid Flow 20 (2000)513-519.
36.Lie-Jin Guo et al., ”Study on gas-liquid two-phase spraying characteristics of nozzles for the humidification of smoke,” Experimental Thermal and Fluid Science 26 (2002) 715-722.
37.林彰廷, “多孔噴頭效應在氣助是噴嘴中之霧化特性研究,” 國立成功大學碩士論文, 2003.
38.Zhang, F. R., Wakabayashi, S. and Tokuoka, N., “The Spray Structure from Swirl Atomizer (1st Report, General Characteristics and Structure of A Spray of Swirl Atomizers),” Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, Vol. 60, No. 570, pp. 675-680, 1994.
39.Jones, A. R., “Design Optimization of a Large Pressure-Jet Atomizer for Power Plant,” Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, Wis., pp. 181-185, 1982.
40.Kenndy, J. B., “High Weber Number SMD Correlations for Pressure Atomizers,” Transactions of ASME Journal of Engineering for Gas Turbines and Power, Vol.108, pp.191-195, 1986.
41.Chin, J. S., Nickolaus, D and Lefebvre, A. H., “Influence of Distance on the Spray Characteristics of Pressure-Swirl Atomizers,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 108, pp. 219-224, 1986.
42.De Corso, S. M., “Effect of Ambient and Fuel Pressure on Spray Drop Size,” ASME, Journal of Engineering for Power, Vol. 82, pp. 10, 1960.
43.De Corso, S. M, and Kemeny, G. A., “Effect of Ambient and Fuel Pressure on Nozzle Spray Angle,” ASME, Journal of Engineering for Power, Vol. 79, No. 3, pp.607-615, 1957.
44.Ortman, J. and Lefebvre, A. H., “Fuel Distributions from Pressure Swirl Atomizers,” Journal of Propulsion and Power, Vol. 1, No. 1, pp. 11~15, 1985.
45.Elkotb, M. M., Rafat, N. M., and Hanna, M. A., “The Influence of Swirl Atomizer Geometry on the Atomization Performance,” Proceedings of the 1st International Conference on Liquid Atomization and Spray System, Tokyo, 1978, pp. 109-115.
46.Chen, S. K., Lefebvre, A. H., and Rollbuhler, J., “Factors Influencing the Effective Spray Cone Angle of Pressure Swirl Atomizers,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp.97~103, 1992.
47.Suyari, M. and Lefebvre, A. H., “Film Thickness Mesaurements in A Simplex Swirl Atomizer,” Journal of Propulsion and Power, Vol.2, No.6, pp. 528~533, 1986.
48.洪嘉宏, “中空錐形噴霧中連續相及離散相之動力特性研究,” 國立成功大學博士論文, 1991.
49.郭振展, “渦旋作用在哈特曼共振腔中之霧化效應,” 大專學生參與專題研究計劃研究成果報告, NSC 89-2815-C-006-140-R-E, 2001.
50.韓亞軒, “多孔噴嘴在漩渦效應下之霧化現象,” 國立成功大學碩士論文, 2004.