| 研究生: |
吳冠霖 Wu, Guan-Lin |
|---|---|
| 論文名稱: |
磷酸鋅塗層應用於純鋅心血管支架之生物降解性與生物相容性研究 Evaluate Biodegradability and Biocompatibility of Zinc Phosphate Coating for Pure Zinc Cardiovascular Stent Applications |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 鋅心血管支架 、磷酸鋅 、磷酸鋅鈉 、生物降解性 、生物相容性 |
| 外文關鍵詞: | zinc cardiovascular stent, zinc phosphate, sodium zinc phosphate, biodegradability, biocompatibility |
| 相關次數: | 點閱:159 下載:38 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
經皮冠狀動脈介入治療 (PCI) 是治療血管栓塞的主要方法,可透過於患部植入心血管支架來重建堵塞的血管。生物可降解的心血管支架材料包括純鐵 (Fe)、鎂 (Mg) 和鋅 (Zn)。在近年的研究中,由於鋅優異的生物相容性與生物降解性,具備發展為新一代心血管支架的潛力。然而,純鋅在植入血管後的局部腐蝕和鋅離子累積可能導致支架徑向力的損失和產生不利於血管修復的環境。為了有效解決這些缺點,本研究使用微波輔助化學轉化方法在純鋅上製備磷酸鋅 (ZnP) 塗層。ZnP塗層的微結構主要由磷酸鋅 (Zn3(PO4)2) 和磷酸鋅鈉 (NaZn2(PO)4) 所組成。不同比例的微觀結構可形成不同表面粗糙度與降解模式。在電化學測試與體外浸泡實驗中,磷酸鋅鈉的出現可以改善純鋅的腐蝕行為。在體外生物相容性中,ZnP 塗層具備可接受的細胞毒性和有利於細胞貼附的降解表面。在血液相容性中,ZnP 塗層表現非溶血性的結果和抑制血小板貼附的作用。總結來說,ZnP 塗層可以表現出均勻的降解行為和有助於血管重塑的生物效應,是作為鋅心血管支架塗覆層的良好材料。
Percutaneous coronary intervention (PCI) is a primary treatment for cardiovascular diseases. The materials of the bioresorbable cardiovascular stent include iron (Fe), magnesium (Mg), and zinc (Zn). Zn has been discovered as a potential material of stents due to its intrinsic physiological relevance, biocompatibility, biodegradability, and pro-regeneration properties. However, localized corrosion and burst release of zinc ions might cause an early implant failure and a harmful environment for vascular remodeling. To efficiency solving these drawbacks, a zinc phosphate (ZnP) coating was prepared with a microwave-assisted chemical conversion method on pure zinc in this study. The microstructures of ZnP groups are mainly composed of zinc phosphate (Zn3(PO4)2) and sodium zinc phosphate (NaZn2(PO)4). These compounds altered the surface roughness, and the corrosion behavior could improve by the appearance of sodium zinc phosphate. The in vitro biocompatibility of ZnP coatings shows acceptable cell viability and a stable and smoother degradation surface for cell adhesion. Furthermore, the hemocompatibility of ZnP exhibited nonhemolytic results and inhibitions to the adhesion of platelets. In conclusion, ZnP coatings could exhibit a uniform degradation behavior and a positive biological effect for vascular remodeling.
[1] Roth G. A., Johnson C., Abajobir A., Abd-Allah F., Abera S. F., Abyu G. et al., "Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015," Journal of the American College of Cardiology, vol. 70, no. 1, pp. 1-25, 2017.
[2] Han H.-S., Loffredo S., Jun I., Edwards J., Kim Y.-C., Seok H.-K. et al., "Current status and outlook on the clinical translation of biodegradable metals," Materials Today, vol. 23, pp. 57-71, 2019.
[3] Hu T., Yang C., Lin S., Yu Q., and Wang G., "Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives," Materials Science and Engineering: C, vol. 91, pp. 163-178, 2018.
[4] Grüntzig A. R., Senning Å., and Siegenthaler W. E., "Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty," New England Journal of Medicine, vol. 301, no. 2, pp. 61-68, 1979.
[5] Serruys P. W., De Jaegere P., Kiemeneij F., Macaya C., Rutsch W., Heyndrickx G. et al., "A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease," New England Journal of Medicine, vol. 331, no. 8, pp. 489-495, 1994.
[6] Chen Q. and Thouas G. A., "Metallic implant biomaterials," Materials Science and Engineering: R: Reports, vol. 87, pp. 1-57, 2015/01/01/ 2015.
[7] Mani G., Feldman M. D., Patel D., and Agrawal C. M., "Coronary stents: a materials perspective," Biomaterials, vol. 28, no. 9, pp. 1689-1710, 2007.
[8] Fu J., Su Y., Qin Y.-X., Zheng Y., Wang Y., and Zhu D., "Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc," Biomaterials, vol. 230, p. 119641, 2020.
[9] Laarman G. J., Suttorp M. J., Dirksen M. T., van Heerebeek L., Kiemeneij F., Slagboom T. et al., "Paclitaxel-eluting versus uncoated stents in primary percutaneous coronary intervention," New England Journal of Medicine, vol. 355, no. 11, pp. 1105-1113, 2006.
[10] Hu T., Yang J., Cui K., Rao Q., Yin T., Tan L. et al., "Controlled slow-release drug-eluting stents for the prevention of coronary restenosis: recent progress and future prospects," ACS applied materials & interfaces, vol. 7, no. 22, pp. 11695-11712, 2015.
[11] Indolfi C., De Rosa S., and Colombo A., "Bioresorbable vascular scaffolds—basic concepts and clinical outcome," Nature Reviews Cardiology, vol. 13, no. 12, p. 719, 2016.
[12] Bowen P. K., Shearier E. R., Zhao S., Guillory R. J., Zhao F., Goldman J. et al., "Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn‐Alloys," Advanced healthcare materials, vol. 5, no. 10, pp. 1121-1140, 2016.
[13] Liu Y., Zheng Y., Chen X. H., Yang J. A., Pan H., Chen D. et al., "Fundamental theory of biodegradable metals—definition, criteria, and design," Advanced Functional Materials, vol. 29, no. 18, p. 1805402, 2019.
[14] Kwon D. Y., Kim J. I., Kang H. J., Lee B., Lee K. W., and Kim M. S., "Biodegradable stent," 2012.
[15] Su S.-H., Nguyen K. T., Satasiya P., Greilich P. E., Tang L., and Eberhart R. C., "Curcumin impregnation improves the mechanical properties and reduces the inflammatory response associated with poly (L-lactic acid) fiber," Journal of Biomaterials Science, Polymer Edition, vol. 16, no. 3, pp. 353-370, 2005.
[16] Peuster M., Wohlsein P., Brügmann M., Ehlerding M., Seidler K., Fink C. et al., "A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits," Heart, vol. 86, no. 5, pp. 563-569, 2001.
[17] Lin W., Qin L., Qi H., Zhang D., Zhang G., Gao R. et al., "Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold," Acta biomaterialia, vol. 54, pp. 454-468, 2017.
[18] Pierson D., Edick J., Tauscher A., Pokorney E., Bowen P., Gelbaugh J. et al., "A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 100, no. 1, pp. 58-67, 2012.
[19] Vormann J., "Magnesium: nutrition and metabolism," Molecular aspects of medicine, vol. 24, no. 1-3, pp. 27-37, 2003.
[20] Gu X.-N. and Zheng Y.-F., "A review on magnesium alloys as biodegradable materials," Frontiers of Materials Science in China, vol. 4, no. 2, pp. 111-115, 2010.
[21] Erne P., Schier M., and Resink T. J., "The road to bioabsorbable stents: reaching clinical reality?," Cardiovascular and interventional radiology, vol. 29, no. 1, pp. 11-16, 2006.
[22] Su Y., Cockerill I., Wang Y., Qin Y.-X., Chang L., Zheng Y. et al., "Zinc-based biomaterials for regeneration and therapy," Trends in biotechnology, vol. 37, no. 4, pp. 428-441, 2019.
[23] Bowen P. K., Drelich J., and Goldman J., "Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents," Advanced materials, vol. 25, no. 18, pp. 2577-2582, 2013.
[24] Shearier E. R., Bowen P. K., He W., Drelich A., Drelich J., Goldman J. et al., "In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc," ACS biomaterials science & engineering, vol. 2, no. 4, pp. 634-642, 2016.
[25] Kambe T., Tsuji T., Hashimoto A., and Itsumura N., "The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism," Physiological reviews, vol. 95, no. 3, pp. 749-784, 2015.
[26] Jackson M., "Physiology of zinc: general aspects," in Zinc in human biology: Springer, 1989, pp. 1-14.
[27] Zhu D., Su Y., Zheng Y., Fu B., Tang L., and Qin Y.-X., "Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39," American Journal of Physiology-Cell Physiology, vol. 314, no. 4, pp. C404-C414, 2018.
[28] Ma J., Zhao N., and Zhu D., "Endothelial cellular responses to biodegradable metal zinc," ACS biomaterials science & engineering, vol. 1, no. 11, pp. 1174-1182, 2015.
[29] Ma J., Zhao N., and Zhu D., "Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells," Scientific reports, vol. 6, no. 1, pp. 1-10, 2016.
[30] Qi P., Yang Y., Maitz F. M., and Huang N., "Current status of research and application in vascular stents," Chinese Science Bulletin, vol. 58, no. 35, pp. 4362-4370, 2013.
[31] Berger M., Rubinraut E., Barshack I., Roth A., Keren G., and George J., "Zinc reduces intimal hyperplasia in the rat carotid injury model," Atherosclerosis, vol. 175, no. 2, pp. 229-234, 2004.
[32] Bowen P. K., Guillory II R. J., Shearier E. R., Seitz J.-M., Drelich J., Bocks M. et al., "Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents," Materials Science and Engineering: C, vol. 56, pp. 467-472, 2015.
[33] Yang H., Wang C., Liu C., Chen H., Wu Y., Han J. et al., "Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model," Biomaterials, vol. 145, pp. 92-105, 2017.
[34] Venezuela J. and Dargusch M., "The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review," Acta biomaterialia, vol. 87, pp. 1-40, 2019.
[35] Mostaed E., Sikora-Jasinska M., Drelich J. W., and Vedani M., "Zinc-based alloys for degradable vascular stent applications," Acta biomaterialia, vol. 71, pp. 1-23, 2018.
[36] Li G., Yang H., Zheng Y., Chen X.-H., Yang J.-A., Zhu D. et al., "Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility," Acta biomaterialia, vol. 97, pp. 23-45, 2019.
[37] Chen C., Chen J., Wu W., Shi Y., Jin L., Petrini L. et al., "In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy," Biomaterials, vol. 221, p. 119414, 2019.
[38] Thomas S., Birbilis N., Venkatraman M., and Cole I., "Corrosion of zinc as a function of pH," Corrosion, The Journal of Science and Engineering, vol. 68, no. 1, pp. 015009-1-015009-9, 2012.
[39] Goux A., Pauporté T., Chivot J., and Lincot D., "Temperature effects on ZnO electrodeposition," Electrochimica Acta, vol. 50, no. 11, pp. 2239-2248, 2005.
[40] Zberg B., Uggowitzer P. J., and Löffler J. F., "MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants," Nature materials, vol. 8, no. 11, pp. 887-891, 2009.
[41] Mudunkotuwa I. A., Rupasinghe T., Wu C.-M., and Grassian V. H., "Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid," Langmuir, vol. 28, no. 1, pp. 396-403, 2012.
[42] Steen K. H., Steen A. E., and Reeh P. W., "A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vitro," Journal of Neuroscience, vol. 15, no. 5, pp. 3982-3989, 1995.
[43] Proudfoot D. and Shanahan C. M., "Biology of calcification in vascular cells: intima versus media," Herz, vol. 26, no. 4, pp. 245-251, 2001.
[44] Alves M. M., Prošek T., Santos C. F., and Montemor M. F., "Evolution of the in vitro degradation of Zn–Mg alloys under simulated physiological conditions," RSC advances, vol. 7, no. 45, pp. 28224-28233, 2017.
[45] Alibakhshi E., Ghasemi E., and Mahdavian M., "Sodium zinc phosphate as a corrosion inhibitive pigment," Progress in Organic Coatings, vol. 77, no. 7, pp. 1155-1162, 2014.