簡易檢索 / 詳目顯示

研究生: 王信鈞
Wang, Hsin-Chun
論文名稱: 氧化鋯陶瓷牙科材料之沖腐蝕損耗及微奈米力學性質之研究
The Study of Nano-Mechanical and Erosion-Corrosion Properties on Zirconia Ceramic Dental Material
指導教授: 李旺龍
Li, Wang-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 102
中文關鍵詞: 奈米壓痕試驗沖腐蝕微奈米力學累積質量損耗程度區塊圖噴射式沖蝕試驗機損耗速率程度區塊圖釔安定正方晶氧化鋯多晶體X 光繞射分析
外文關鍵詞: Micro-Nano Mechanical Properties, Y-TZP, XRD, Nanoindentation, Wear Map, Impinging Jet Erosion Apparatus, Wear Rate Map, Erosion-Corrosion
相關次數: 點閱:138下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究的目的在於測試陶瓷人工義齒抑或是人工牙冠材料Y-TZP (釔安定正方晶氧化鋯多晶體)之沖腐蝕損耗特性及微奈米力學機械性質。將含有3mole %氧化釔穩定劑之釔安定氧化鋯粉末以1500℃持溫四小時燒結成直徑9.00 mm、厚度為2.25 mm之圓形試片。將這些試片分為六組,以噴射式沖蝕試驗機進行實驗,此沖蝕試驗分別在六種不同的酸鹼性下進行,其pH值分別為2.0, 3.5, 5.0 (酸性)、7.0 (中性)以及8.5, 9.5 (鹼性),每片試片所進行實驗的時間皆為20小時。實驗中所使用的沖蝕顆粒為粒徑300 ~ 600 μm 之氧化矽砂,沖擊角主要採90°垂直於試片表面,並以30°傾斜與表面進行比較。經由沖腐蝕試驗過後的試片將再藉由 XRD(X光繞射分析)以及MTS® G200奈米壓痕試驗機進行材料特性之分析。試驗中所使用的Y-TZP試片在受到不同酸鹼性的沖腐蝕損耗下,其所顯現的試片損耗以及損耗速率皆有著顯著的差異,由實驗的結果可知,腐蝕的效應會增加試片的損耗量並且加速損耗的速率,但此效應在酸性的條件下又較鹼性明顯。在不同沖蝕時間點Y-TZP材料所特有的麻田散相變可藉由XRD分析的結果觀測到。在沖蝕過程中各沖蝕條件下,試片皆會在特定的時間出現大量的質量損耗,此大量損耗的發生據推測應為大量的單斜晶氧化鋯生成所導致。實驗中並配合奈米壓痕試驗針對受沖腐蝕試驗前後的Y-TZP試片進行機械性質的量測,其結果顯示,當Y-TZP試片受到沖蝕溶液的沖蝕後其機械性質會明顯的降低。此外,本研究根據試片的累積質量損耗量及損耗速率,定義出三個等級的損耗程度,並利用此結果製做成Y-TZP材料之沖腐蝕累積質量損耗程度區塊圖及損耗速率程度區塊圖。

    The purpose of this study was to test in vitro micro-nano mechanical and erosion-corrosion properties of the Y-TZP (Yittria-Tetragonal Zirconia Polycrystalline) material which was used to make artificial teeth or ceramic dental crown. Y-TZP circular disks were made by sintering Zircar® 3mole% yttria stablized ziconia compacted powder at 1500℃for 4 hr. These samples were divided equally into six groups. Erosion and corrosion experiments were carried out by Impinging Jet Erosion Apparatus at six different pH values which are 2.0, 3.5, 5.0 (acid), 7.0 (neutral), and 8.5, 9.5 (alkaline) for 20 hours. The impact particles are ranged from 300 to 600 μm with the composition of silica and the 90° impact angle was used in these tests and comparing with the incline erosion of 30°. Specimens of the Y-TZP material were characterized using XRD (X-ray diffraction) and MTS® G200 Nanoindenter. There was significant difference in the wastage and wear rate of these Y-TZP material specimens during the erosion-corrosion experiments with different pH valus. The results show that the corrosion effect will increase the wastage quantity and accelerate the wear rate of Y-TZP material. But this phenomenon was more obvious in acid than in alkaline environment. The Martensitic phase tranformation at different erosion time of Y-TZP material can be identified in the results of XRD analysis on the specimens before and after erosion-corrosion tests. During the erosion processes of different pH conditions, a considerable mass loss of the specimens can be observed at a specific erosion time. It seems to be induced by the appearance of a huge number monoclinic zirconia. According to the nanoindentation results, the mechanical properties of Y-TZP material are reduced after being carried out erosion-corrosion tests. In addition, three levels of accumulative wastage and wear rate were defined that the wear and wear rate maps can be obtained from the defined levels.

    中文摘要………………………………………………………………….....Ⅰ Abstract……………………………………………………………………...II 誌謝………………………………………………………………………….III 目錄………………………………………………………………………….IV 表目錄…………………………………………………………….………. VII 圖目錄..........................................................................................................VIII 符號表.......................................................................................................... XII 第一章 緒論..……………………………………………………………….1 1-1. 牙齒之組成構造….………………..………………….....................5 1-2 生醫材料…………………………………………………....……....7 1-2-1. 義齒材料………………………………………………...…..9 1-2-2. 氧化鋯材料…….……………..…………………….......….10 1-2-3. 氧化鋯材料之韌化機制………..…………………..........13 1-3. 沖腐蝕損耗………………….……………………………...……..15 1-3-1. 金屬材料………………..……………………………...…..18 1-3-2. 陶瓷材料………………..……………………………...…..23 第二章 實驗流程 2-1. 試片及沖蝕液之準備………………….…………………………25 2-1-1. 試片…………………………….…………………………25 2-1-2. 沖蝕溶液……………………….…………………………26 2-1-3. 沖蝕顆粒……….…………………………………………26 2-2. 實驗流程………………………………………………………….28 2-3. 實驗設計與成果對照.....................................................................30 第三章 分析儀器 3-1. 噴射式沖蝕試驗機.……………………………………………...32 3-1-1. 使用動機…………………………………………………...32 3-2. 奈米壓痕試驗機…...………..…………………………………...36 3-2-1. 使用動機………………………………………………….38 3-3. X光繞射儀………………………..……………...……………….38 第四章 結果與討論 4-1. XRD分析.........................................................................................40 4-2. 掃描式電子顯微鏡觀測.................................................................43 4-3. 奈米壓痕試驗.................................................................................51 4-4. 沖腐蝕試驗 4-4-1. 噴射式沖蝕試驗機校正.....................................................52 4-4-2. 自然牙之沖腐蝕試驗實驗結果.........................................54 4-4-3. Y-TZP材料之沖腐蝕試驗實驗結果...................................57 第五章 總結.......…………………………………………………..............73 參考文獻…………………………………………………………………….74 附錄 I. 奈米壓痕基本模組原理…………………………………………….81 II. 奈米壓痕連續勁度量測…………………………………..……….85 自述………………………………………………………………………….87 表目錄 表1-1. 三種氧化鋯之結晶相示意圖……………………………...….…...11 表1-2. Y-TZP 與常用陶瓷材料之材料特性………...……………….…...12 表3-1. 奈米壓痕試驗機之量測精度……………………………...….…...38 表4-1. 各沖蝕條件下試片經20 hr實驗後材料表面之機械性質…….….51 表4-2. 各沖蝕條件下自然牙經200 min實驗後之機械性質…………….52 表4-3. 沖腐蝕試驗實驗參數……………………………………………...53 表4-4. 經200 min自然牙沖腐蝕實驗後材料之總損耗量……………….56 表4-5. 經20 hr沖腐蝕實驗後材料之總損耗量…………….…………….59 表I-1. 探針參數對照表...............................................................................84 圖目錄 圖1-1. 牙齒構造圖……...…..………………………………………………5 圖1-2. 氧化鋯材料應力引發相變韌化機制示意圖…………..…..........14 圖1-3. 氧化鋯材料之為裂縫韌化機制示意圖..……………...…..………15 圖1-4. 沖腐蝕損耗後之輸送管壁內側………...…..……………………..16 圖1-5. 受沖蝕效應影響所造成的材料崩壞…………….………………..16 圖1-6. 常用以模擬沖蝕效應之碳化矽砂….……………………………..17 圖1-7. 鋁金屬與氧化鋁在不同的沖蝕角度下所呈現的損耗量………...17 圖1-8. 各類常見金屬材料之材料硬度與沖蝕損耗關係………………...18 圖1-9. 以不同顆粒尺寸的石英砂對材料進行沖蝕試驗結果之比較…19 圖1-10. 鐵金屬在水中的Pourbaix Diagram……………………………….20 圖1-11. 鐵金屬在不同沖蝕速度與電化學條件之損耗程度圖…………...23 圖1-12. 常見金屬在不同沖蝕速度與電化學條件之低度損耗程度圖…23 圖1-13. 氧化鋁材料受到90°入射角沖蝕後所呈現的表面形貌………….24 圖2-1. 未燒結氧化鋯粉末顆粒.…..………………………………………27 圖2-2. 備製完成之Y-TZP試片...................................................................27 圖2-3. 氧化矽砂...........................................................................................28 圖2-4. 實驗流程圖.......................................................................................30 圖2-5. 實驗設計及成果對照圖...................................................................31 圖3-1. 噴射式沖蝕試驗機 (Impinging Jet Erosion Apparatus):側視圖...33 圖3-2. 噴射式沖蝕試驗機 (Impinging Jet Erosion Apparatus):上視圖...33 圖3-3. 噴射式沖蝕試驗機結構示意圖.......................................................34 圖3-4. 噴射器示意圖...................................................................................34 圖3-5. 噴射器...............................................................................................35 圖3-6. 不同孔徑之射出噴嘴(左)及控制噴嘴(右)……………………..35 圖3-7. MTS®奈米壓痕試驗機機台配置圖.................................................36 圖3-8. MTS® G200奈米壓痕試驗機整體..................................................37 圖3-9. MTS® G200奈米壓痕試驗機實驗平台…………………………..37 圖3-10. 德國布魯克(Bruker) X光繞射儀(Model D8 Advance)………......39 圖4-1. 備製完成之Y-TZP試片XRD分析.................................................40 圖4-2. 1400℃與1500℃燒結之Y-TZP試片XRD比較.............................41 圖4-3. pH 7.0沖蝕條件下,不同時間試片結晶相之XRD分析................42 圖4-4. pH 9.5沖蝕條件下,不同時間試片結晶相之XRD分析................42 圖4-5. pH 2.0沖蝕條件下,不同時間試片結晶相之XRD分析................43 圖4-6. 原始Y-TZP試片之表面SEM觀測.................................................45 圖4-7. 市售Y-TZP試片之表面SEM觀測..................................................45 圖4-8. 沖蝕過後之Y-TZP試片之表面SEM觀測(pH 7.0).........................46 圖4-9. 沖蝕過後之Y-TZP試片之表面SEM觀測(pH 2.0).........................46 圖4-10. 沖蝕過後之Y-TZP試片之表面SEM觀測(pH 9.5).........................47 圖4-11. 沖蝕過後之Y-TZP試片斷面SEM觀測..........................................47 圖4-12. 15°沖蝕過後之Y-TZP試片表面SEM觀測....................................48 圖4-13. 30°沖蝕過後之Y-TZP試片表面SEM觀測....................................48 圖4-14. 45°沖蝕過後之Y-TZP試片表面SEM觀測....................................49 圖4-15. 60°沖蝕過後之Y-TZP試片表面SEM觀測....................................49 圖4-16. 沖蝕前之自然牙琺瑯質...................................................................50 圖4-17. 沖蝕實驗後之自然牙琺瑯質...........................................................50 圖4-18. x值與沖蝕顆粒重量濃度之關係圖.................................................53 圖4-19. 自然牙之累積質量損耗曲線- Test 1...............................................55 圖4-20. 自然牙之累積質量損耗曲線- Test 2...............................................55 圖4-21. 自然牙之累積損耗程度區塊圖......................................................57 圖4-22. Y-TZP材料垂直沖蝕之累積質量損耗曲線-Test 1......................61 圖4-23. Y-TZP材料垂直沖蝕之累積質量損耗曲線-Test 2......................61 圖4-24. Y-TZP材料垂直沖蝕之累積損耗程度區塊圖-Test 1..................63 圖4-25. Y-TZP材料垂直沖蝕之累積損耗程度區塊圖-Test 2..................63 圖4-26. Y-TZP材料垂直沖蝕之損耗速率程度區塊圖................................65 圖4-27. Y-TZP材料15°傾斜沖蝕之累積質量損耗曲線-Test 1................66 圖4-28. Y-TZP材料15°傾斜沖蝕之累積質量損耗曲線-Test 2................68 圖4-29. Y-TZP材料30°傾斜沖蝕之累積質量損耗曲線-Test 1................67 圖4-30. Y-TZP材料30°傾斜沖蝕之累積質量損耗曲線-Test 2................68 圖4-31. Y-TZP材料45°傾斜沖蝕之累積質量損耗曲線-Test 1................68 圖4-32. Y-TZP材料45°傾斜沖蝕之累積質量損耗曲線-Test 2................69 圖4-33. Y-TZP材料60°傾斜沖蝕之累積質量損耗曲線-Test 1................69 圖4-34. Y-TZP材料60°傾斜沖蝕之累積質量損耗曲線-Test 2................70 圖4-35. Y-TZP材料15°傾斜沖蝕之損耗速率程度區塊圖.........................70 圖4-36. Y-TZP材料30°傾斜沖蝕之損耗速率程度區塊圖.........................71 圖4-37. Y-TZP材料45°傾斜沖蝕之損耗速率程度區塊圖.........................70 圖4-38. Y-TZP材料60°傾斜沖蝕之損耗速率程度區塊圖.........................72 圖I-1. 奈米壓痕試驗基本模組施載-卸載曲線..........................................81 圖I-2. 探針壓印與壓痕示意圖...................................................................82 圖II-1. MTS®奈米壓痕試驗機之CSM模組機台配置圖...........................86 圖II-2. CSM模組示意圖..............................................................................86

    1. 林亭枝、謝天渝、吳逸民,Oral Health Status of Health Examination Cases in Hospital, 安泰醫護雜誌,Vol. 12, No.3: 143-151.
    2. J. O. Grippo, M. Simring and S. Schreiner, Attrition, abrasion, corrosion and abfraction revisited: A new perspective on tooth surface lesions, American Dental Association, Vol. 135, No. 8: 1109-1118, (2004).
    3. R. Moazzez, B. G. N. Smith and D. W. Bartlett, Oral pH and drinking habit during ingestion of a carbonated drink in a group of adolescents with dental erosion, Journal of Dentistry, Vol. 28, No. 6: 395-397, (2000).
    4. K. S. Liu, S. C. Lin, S. L. Li, H. C. Cheng and C. W. Yeh, Engineering Material Science, Chuan Hwa Book Corporation, Taipei, Taiwan, p.313, (1991).
    5. O. Suzuki, A. Suda, T. Sato, M. Takagi and T. Osanai, Biocompatibility of zirconia dispersed hydroxyapatite ceramics, Journal of Japan Orthopaedic Association, Vol. 64, No. 4: 249-258, (1990).
    6. Q. Fang. P. S. Sidky and M. G. Hocking, The effect of corrosion and erosion on ceramic materials, Corrosion Science, Vol. 39, No. 3: 511-527, (1997).
    7. S. Srinivasan and R. O. Scattergood, Effect of erosdent hardness on erosion of brittle materials, Wear, Vol. 128, No. 2: 139-152, (1988).
    8. J. E. Ritter, Spherical particle impact damage, Key Engineering Materials, Vol. 71: 93-106, (1992).
    9. D. J. Rowcliffe, Quasi-static indentation of ceramics, Key Engineering Materials, Vol. 71: 1-22, (1992).
    10. Q. Fang, H. Xu, P. S. Sidky and M. G. Hocking, Erosion of ceramic materials by a sand/water slurry jet, Wear, Vol. 224, No. 2: 183-193, (1999).
    11. M. M. Stack and N. Pumgwiwat, Particulate erosion-corrosion of Al in aqueous conditions: some perspectives on pH effects on the erosion-corrosion map, Tribology International, Vol. 35, No. 10: 651-660, (2002).
    12. A.W. Batchelor and G.W. Stachowiak, Predicting synergism between corrosion and abrasive wear, Wear, Vol. 123, No. 3: 281-291, (1988).
    13. J. Postlethwaite, E.B. Tinker and M.W. Hawrylak, Erosion-corrosion in slurry pipelines, Corrosion, Vol. 30, No. 8: 285-290, (1974).
    14. B.W. Madsen, Measurement of erosion-corrosion synergism with a slurry wear test apparatus, Wear, Vol. 123, No. 2: 127-142, (1988).
    15. R. Stevens, An introduction to zirconia, Magnesium Electron Press, London, UK, (1986).
    16. L. Lay, Corrosion resistance of technical ceramics, HMSO Publish Centre, London, p. 56-58, (1991).
    17. R. A. McCauley, Corrosion of ceramics, Marcel Dekker Press, New York, p. 145, (1995).
    18. S. M. Wiederhorn and B. R. Lawn, Strength Degradation of Glass Impacted with Sharp Particles: I, Annealed Surfaces, Journal of the American Ceramic Society, Vol. 62, No. 1-2: 66-70, (1979).
    19. D. B. Marshall, A. G. Evans, M. E. Gulden, J. L. Routbort and, R. O. Scattergood, Particle size distribution effects on the solid particle erosion of brittle materials, Wear, Vol. 71, No 3: 363-373, (1981).
    20. G. L. Sheldon and Ashok Kanhere, An investigation of impingement erosion using single particles, Wear, Vol. 21, No. 1: 195-209, (1972).
    21. I. M. Hutchings, Wear by particulates, Chemical Engineering Science, Vol. 42, No. 4: 869, (1987).
    22. J. P. Tu and J. Li, Effect of phase transformation induced plasticity on the erosion of TZP ceramics, Materials Letters, Vol. 31, No. 3-6: 267-270, (1997).
    23. Q. Fang, P. S. Sidky and M. G. Hocking, Erosion and corrosion of PSZ-zirconia and the t-m phase transformation, Wear, Vol. 233-235: 615-622, (1999).
    24. Q. Fang, P. S. Sidky and M. G. Hocking, Microripple formation and removal mechanism of ceramic materials by solid-liquid slurry erosion, Wear, Vol. 223, No. 1-2: 93-101, (1998).
    25. L. L. Hench, Bioceramics, From concept to clinic, Journal of the American Ceramic Society, Vol.74, No. 7: 1487-1510, (1991).
    26. R. H. Doremus, Review of bioceramics, Journal of Materials Science, Vol. 27: 287-297, (1992).
    27. R. C. Garvie, R. H. Hannink and R. T. Pascoe, Ceramics steel, Nature, Vol. 258: 703-704, (1975).
    28. G. J. Christensen, The use of porcelain-fused-to-metal restorations in current dental practice: A survey, The Journal of Prosthetic Dentistry, Vol. 56, No.1: 1-3, (1986).
    29. K. S. Liu, S. C. Lin, S. L. Li, H. C. Cheng and C. W. Yeh, Engineering Material Science, Chuan Hwa Book Corporation, Taipei, Taiwan, p.313, (1991).
    30. A. H. Heruer, Transformation toughening in ZrO2-containing ceramics, Journal of the American Ceramic Society, Vol. 70, No. 10: 689-698, (1987).
    31. S. Kumar and E.C. Subbarao, Complex impedance and admittance of stabilised zirconia, Solid State Ionics, Vol. 5: 543-546, (1981).
    32. W. Kriven, Martensitic toughening of ceramics, Materials Science and Engineering: A, Vol. 127, No.2: 249-255, (1990).
    33. O. N. Grigoryev, Effect of zirconia additive on mechanical properties and structure of alumina ceramics, Journal of Materials Science, Vol. 29: 4633-4638, (1994).
    34. N. Nakanishi and T. Shigenmastu, Martensitic transformations in zirconia ceramics, Materials Transactions, Vol. 33, No. 3: 318-323, (1992).
    35. G. S. A. M. Theunissen, J. S. Bouma, A. J. A. Winnubst and A. J. Burggraaf, Mechanical properties of ultra-fine grained zirconia ceramics, Journal of Materials Science, Vol. 27: 4429-4438, (1992).
    36. R. Riedel, Handbook of Ceramic Hard Materials Version 1, Wiley-Vch Press, New York, U.S., (2004).
    37. C. Piconi, G. Maccauro, Zirconia as a ceramic biomaterial, Biomaterals, Volume 20, No.1: 1-25, (1999).
    38. C. W. Kuo, Y. H. Lee, K. Z. Fung and M. C. Wang, Effect of Y2O3 addition on phase transition and growth of YSZ nanocrystallites prepared by a sol-gel process, Journal of Non-Crystalline Solids, Vol. 351, No. 4: 304-311, (2005).
    39. A. H. Heuer, Stability of tetragonal ZrO2 particles in ceramic matrices, Journal of the American Ceramic Society, Vol. 65, No.12: 642-650, (1982).
    40. S. Srinivasan, R. O. Scattergood, G. Pfeiffer, R.G. Sparks, and M. A. Paesler, Low temperature treatment of transformation toughened partially stabilized magnesia-doped zirconia, Journal of the American Ceramic Society, Vol. 73, No. 5: 1421-24, (1990).
    41. F. F. Lange, Transformation toughening Part 3, Experimental observations in the ZrO2-Y2O3 system, Journal of Materials Science, Vol. 17: 240-246, (1982).
    42. D. B. Marshall, Strength characteristics of transformation-toughened zirconia, Journal of the American Ceramic Society, Vol. 69, No. 3: 173-180, (1986).
    43. T. Masaki, Mechanical properties of toughened ZrO2-Y2O3 Ceramics, Journal of the American Ceramic Society, Vol. 69, No. 8: 638-640, (1986).
    44. K. Noguchi, M. Fujita, T. Masaki, and M. Mizushina, Tensile strength of yttria-stabilized tetragonal zirconia polycrystals, Journal of the American Ceramic Society, Vol. 72, No.7: 1305-1307, (1989).
    45. N. Claussen, Stress-induced transformation of tetragonal ZrO2 particles in ceramic matrices, Journal of the American Ceramic Society, Vol. 61, No.1-2: 85-86, (1978).
    46. E. P. Butler, Transformation-toughened zerconia ceramics, Materials Science and Technology, No. 1: 471, (1985).
    47. M. M. Stack, Bridging the gap between tribology and corrosion: from wear maps to Pourbaix diagrams, International Materials Reviews, Vol. 50, No. 1:1-17, (2005).
    48. I. Finnie, J. Wolak and Y. Kabil, Erosion of Metals by Solid Particles, Journal of Materials, Vol. 2:682-700, (1967).
    49. A. K. Cousens and I. M. Hutchings: Proceeding 6th International Conference on Erosion by liquid and solid impact, Cavendish Laboratory, University of Cambridge, p.83, (1981).
    50. G.P. Tilly and W. Sage, The interaction of particle and material behaviour in erosion processes, Wear, Vol. 16: 447–465, (1970).
    51. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solution, NACE, Houston, (1974).
    52. Z. Yue, P. Zhou and J. Shi, Proceeding Conference on Wear of materials, ASME, New York, America, p.763–768, (1987).
    53. M. M. Stack, N. Pungwiwat, Erosion-corrosion mapping of Fe in aqueous slurries: a new rationale for defining the erosion-corrosion interaction, Wear, Vol. 256, No. 5:565-576, (2004).
    54. M. M. Stack, B.D. Jana, Modelling particulate erosion–corrosion in aqueous slurries: some views on the construction of erosion–corrosion maps for a range of pure metals, Wear, Vol. 256, No. 9-10: 986-1004, (2004).
    55. A.J. Sparks, I.M. Hutchings, Effects of erodent recycling in solid particle erosion testing, Wear, Vol. 162-164, No.1: 139-147, (1993).
    56. J. B. Zu, I. M. Hutchings and G.T. Burstein, Design of a slurry erosion test rig, Wear, Vol. 140, No.2: 331-344, (1990).
    57. M. M. Stack, N. Corlett and S. Turgoose, Some thoughts on modelling the effects of oxygen and particle concentration on the erosion–corrosion of steels in aqueous slurries, Wear, Vol. 255, No. 1-6: 225-236, (2003)
    58. B. D. Jana and M.M. Stack, Modelling impact angle effects on erosion–corrosion of pure metals: Construction of materials performance maps, Wear, Vol. 259, No. 1-6: 243–255, (2005).
    59. M. M. Stack and B.D. Jana, Modelling particulate erosion–corrosion regime transitions for Al/Al2O3 and Cu/Al2O3 MMCs in aqueous conditions, Tribology International, Vol. 38, No. 11-12: 995-1006, (2005).
    60. M. M. Stack, M. M. Antonov and I. Hussainova, Some views on the erosion–corrosion response of bulk chromium carbide based cermets, Journal of Physics D: Applied Physics, Vol. 39: 3165–3174, (2006).
    61. W. C. Oliver and G. M. Pharr, An improved technique for determine hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, Vol. 7, No. 6: 1564-1583, (1992).
    62. C. P. Lin, W. H. Douglas, Structure–property relations and crack resistance at a bovine dentin–enamel junction, Journal of Dental Research, Vol. 73, No. 5: 1072-1078, (1994).
    63. S. T. Rasmussen, R.E. Patchin, Fracture properties of human enamel and dentin in an aqueous environment, Journal of Dental Research, Vol. 63, No. 12: 1362-1368, (1984).
    64. P. G. Fox, The toughness of enamel, a natural fibrous composite, Journal of Materials Science, Vol. 15: 3113-3121, (1985).
    65. R. Z. Wang, S. Weiner, Strain-structure relations in human teeth using Moire fringes, Journal of Biomechanics, Vol. 31, No. 2: 135-141, (1998).
    66. N. Meredith, M. Sheriff, D.J. Setchell and S.A.V. Sivanson, Measurements of the microhardness and Young modulus of human enamel and dentin using an indentation technique, Archives of Oral Biology, Vol. 41, No. 6: 539-545, (1996).
    67. H. H. K. Xu, D. T. Smith, S. Jahanmir, E. Romberg, J. R. Kelly, V. P. Thompson and E. D. Rekow, Indentation damage and mechanical prop-erties of human enamel and dentin, Journal of Dental Research, Vol. 77, No. 3: 472-480, (1998).
    68. M. P. Klug and L. E. Alexander, X-ray diffraction procedure for polycrystalline and amorphous material, Wiley Press, New York, USA, (1974).
    69. C. Santos, L. H. P. Teixeira, J. K. M. F. Daguano, S. O. Rogero, K. Strecker, C. N. Elias, Mechanical properties and cytotoxicity of 3Y-TZP bioceramics reinforced with Al2O3 particles, Ceramics International, Vol. 35: 709–718, (2009).
    70. I. M. Hung, D. T. Hung, K. Z. Fung and M. H. Hon, Journal of European Ceramic Society, Vol. 26: 2627, (2006).

    下載圖示 校內:2011-07-21公開
    校外:2011-07-21公開
    QR CODE