| 研究生: |
何佳容 He, Jia-Rung |
|---|---|
| 論文名稱: |
由稻殼中取得生質中孔洞氧化矽並作為螢光粉之原料 Synthesis of Phosphors by Using Bio-mesoporous Silica from Rice Husk |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 生質中孔洞氧化矽 、氧化矽剝蝕法 、金屬矽酸鹽材料 、螢光粉 |
| 外文關鍵詞: | bio-mesoporous silica, silicate-exfoliating, metal-silicate, phosphors |
| 相關次數: | 點閱:106 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在於利用簡單的方式,從稻殼中取得高表面積的生質中孔洞氧化矽,並作為金屬氧化物的載體,合成出金屬矽酸鹽(metal-silicate)材料。在應用上,可藉由改變原料的組成來得到不同放射波長的螢光粉。藉由模擬自然界phyllosilicate礦物的生成機制,發展出氧化矽剝蝕法,並致力於研究各類型metal-silicate之合成條件,以達到對材料表面積、晶相以及金屬離子嵌入量的控制。
稻殼為有機物及無機物所組成,在無機物中除了氧化矽外還含有多種的金屬離子(Na+、K+、Ca2+…等)。在煅燒移除稻殼中的有機物時,金屬離子會與氧化矽形成共熔物而得到高結晶度,低表面積的氧化矽,因此限制了其應用性。以酸水水熱法處理稻殼,即可移除稻殼中的金屬離子,並且氧化矽在水熱過程中會溶解再重組成中孔洞的結構,可得表面積約200 m2g-1,平均孔徑約6.0 nm的生質中孔洞氧化矽。
對於zinc-silicate孔洞材料合成法的研究,是先製備出Zn(OH)2沉澱物,再引入中孔洞氧化矽,並利用100oC水熱所提供的能量,使中孔洞氧化矽溶解成矽酸鹽再用來剝蝕Zn(OH)2,並經由重組排列形成片狀結構。在pH=10.0,Zn/Si=0.80的合成條件下,經由水熱一天的反應,即可得到具有高面積(138 m2g-1)的Zn-stevensite材料。利用螯合法製備螢光材料是將zinc-silicate與1% Mn(NO3)2溶液混合均勻,靜置3小時使Mn2+離子進入zinc-silicate的結構中,再煅燒900℃即可得到Zn2SiO4:Mn2+綠光螢光粉,也可用相同的合成手法合成Y2SiO5:Ce3+藍光螢光粉。而一步法製備螢光材料則是在水熱合成zinc-silicate的過程中即添加Eu3+離子,所得到的產物為Zn-Eu-silicate化合物,煅燒700℃後轉為Zn2SiO4:Eu3+紅光螢光粉。
By using a simple and safe citric acid-hydrothermal treatment, bio-mesoporous silica with a high surface area ( 200 m2g-1) and pore size of around 6.0 nm can be isolated from rice husk. We found that the surface area of the isolated porous silica is dependent on the pH value, hydrothermal temperature, and reaction time but independent on the water content. At pH around 2.5, the resulted bio-mesoporous silica possesses the highest surface area regardless to the acid sources. From the data of the surface areas, the required reaction time to isolate the bio-mesoporous silica of the largest surface area ( 200 m2g-1) from rice husk increases with decreasing temperature.
To mimic the formation of the clay minerals in Nature, we provided a simple silicate-exfoliating method to prepare zinc-silicate materials. The mesoporous zinc-silicate was obtained from hydrothermal treatment on a mixture of bio-mesoporous silica zinc hydroxides. The mesoporous zinc-silicate materials can be used absorbent for Mn2+ or incorporation of other metal ions. The resulted Mn2+ doped zinc-silicate, Eu3+ doped zinc-silicate, and Ce3+ doped yttrium-silicate can transform to Zn2SiO4:Mn2+ green phosphors, Zn2SiO4:Eu3+ red phosphors, and Y2SiO5:Ce3+ blue phosphors by a high-temperature calcination, respectively. The effects of pH, the metal to silica ratio, hydrothermal time, and other experimental parameters on the intensities of the prepared phosphors were also discussed in detail.
1. H. P. Beohm, Adv. Catal., 16, 226, 1966.
2. 中國地質大學-精品課程網, 第二十一章第四節.
3. E. P. Giannelis, R. Krishnamoorti and E. Manias, Adv Polym Sci, 138, 107-147, 1999.
4. Soil and Environmental Biogeochemistry @ Stanford University, Soil Chemistry, Mineral-Summary.
5. B.N Figgis(Ed),Introduction to ligand Fields,1975
6. A.M. Stoneham(Ed),Theory of Defects in Solids,1975
7. G. Blasse and B.C.“Grabmaier,Luminescent Materials”,1994
8. R.C. Popp,“Luminescence and the solid state”,1991
9. Dong Wang, Qingrui Yin, Yong xiang Li,Minquan Wang, J.Electrochem.Soc., 149, H65-H67, 2002.
10. W.R.Blumenthal and D.S.Philips, J.Am.Ceram.Soc, 79, 1047, 1996.
11. A.Ikesue and I.Furusato, J.Am.Ceram.Soc.78,225, 1995
12. M.Gomi and Kanie, J.Appl.Phys, 35, 1798, 1996
13. 張有義郭籃生編著,“膠體與界面化學入門” ,高立圖書工公司,台北市,民國 86 年
14. R.P.Rao, J.Electrochem Soc.,143,189, 1996
15. H.Yuan, “The investigation of Long Persistent Afterglow SrAl2O4:Eu2+,Dy3+ Single Crystal”, 1998.
16. Y.C.Kang,S.B.Park,Mater.Res.Bull., 35,1143, 2000
17. T.Tani,L.Madler, Part.Syst.Charact., 19, 354, 2002
18. M.H.Grant, Encyclopedia of Chemical Technology,4th ed, 21.387, 1998
19. L.Xie,A.Ncoormack, J.Electro.Soc., 150,H7, 2003
20. 劉如熹、紀喨勝,“紫外光發光二極體用螢光介紹”,2003
21. P.Atkins and L.Jones, “Chemistry molecules,Matter,and Change”,1997
22. 劉如熹、王健源,“白光發光二極體製作技術”,2001
23. Xinguo Zhang, “J. Phys. Chem. C”, 118, 7591-7598, 2014
24. K. S. Sing, Pure and applied chemistry, 57, 603-619, 1985
25. 林德財,”木質纖維原料製炭時之熱解特性與炭性質”.
26. 許昺奇,”結晶型氧化矽安全衛生教育訓練”.
27. A. M. Venezia, Journal of Solid State Chemistry, 161, 373-378, 2001
28. L. Pauling, Pord. Nat. Acad. Sci. U.S.A, 16, 578, 1930.
29. 許海艇, 徐光青, 鄭治祥, 吳玉程, 過程工程學報, 11, 509-513, 2011
30. P. Ramakrishna, D. Murthy and D. Sastry, Ceramics International, 40, 4889-4895, 2014
31. K. S. Sohn, B. Cho and H. D. Park, Journal of the American Ceramic Society, 82, 2779-2784, 1999
32. 杜志輝,”Zn2SiO4摻雜銪螢光體之發光特性研究”,2005.
33. Ge Zhu, J. Mater. Chem. C, 1, 4490–4496, 2013.
34. G. Xu, H. Xu and Y. Wu, Journal of Luminescence, 130, 1717-1720, 2010
35. T. H. Cho and H. J. Chang, Ceramics International, 29, 611-618, 2003
36. Y. Hao and Y. Wang, Journal of luminescence, 122, 1006-1008, 2007
37. M. Takesue, K. Shimoyama, S. Murakami, Y. Hakuta, H. Hayashi and R. L. Smith Jr, The Journal of Supercritical Fluids, 43, 214-221, 2007
38. Jae-Sul An, J. Phys. Chem. C, 114, 10330–10335, 2010
39. Heitor Fernando Nunes de Oliveira, Quim. Nova, 32, 5, 1346-1349, 2009