| 研究生: |
劉子瑜 Liu, Zih-Yu |
|---|---|
| 論文名稱: |
經皮輸送可撓式晶片傳遞傳明酸探討血清藥物濃度之研究 Study of Transdermal Delivery Flexible Chip to Transfer Tranexamic Acid for Drug Concentration of Serum |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 經皮輸送 、可撓式 、微機電製程 、電穿孔滲透 |
| 外文關鍵詞: | Transdermal Delivery, Flexible Chip, MEMS, Electroporation |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發經皮輸送可撓式晶片系統並以傳明酸(Tranexamic acid, TA)乳液藥物經由鼠皮膚(Rat skin)傳輸至血液內,再以液相層析串聯質譜儀(Liquid chromatograph-Mass spectrometer, LC-MS)分析實驗動物血清,藉此作為藥物傳遞效果的依據。此可撓式晶片系統乃是使用微機電(Micro electro mechanical systems, MEMS) 與化鎳浸金(Electroless nickel/immersion gold, ENIG) 製程製作晶片, 並利用電穿孔滲透法(Electroporation)作為實驗機制。當在晶片上施加脈衝電壓之後,電極與皮膚之間會產生一穿膜電場,使皮膚產生微小孔洞,讓藥物能順利穿透皮膚到血液內。本型經皮輸送可撓式晶片系統有別於一般電穿孔法,使用1 V、3 V、5 V、7 V 的低脈衝電壓下,即能得到經皮輸送的效果。並探討在不同脈衝頻率(1 Hz、10 Hz、100 Hz、1 kHz、10 kHz)下,對於經皮輸送效果的影響。實驗結果顯示在7 V 脈衝電壓及高頻率(10 kHz)下可以得到最好的藥物經皮輸送效果,為自然滲透的9.8 倍。因此,由實驗結果可以得到,利用此可撓式電穿孔晶片系統能有效地增加藥物的經皮輸送效果。
This study was developed transdermal delivery flexible chip system for delivering tranexamic acid into rat blood through skin. The chip system was used Micro-Electro-Mechanical-Systems (MEMS) and Electroless Nickel Immersion Gold (EN/IG) technology to fabricate as experimental mechanism.
The electrode would generate cell-penetrating electric field in the skin between electrodes when voltage was applied in chip. It could make the skin produce some tiny pores and delivery drug into it. This chip system is different to electroporation that it could gain transdermal delivery effect as using low voltage (1 V, 3 V, 5V, and 7 V). Moreover it was discussed the effect of transdermal delivery under different frequency (1 Hz, 10 Hz, 100 Hz, 1 kHz, and 10k Hz). It could gain excellent transdermal delivery effect when it was used voltage (7 V) and frequency (10k Hz), and it’s 9.8 times than passive transport. Therefore, this flexible chip system could enhance the transdermal delivery effectively from the experimental results.
[1] H. Wang, “Progress in pharmacokinetic of transdermal drugs,” Chinese Journal Of Clinical Pharmacology And Therapeutics, 12(11),1216-1220, 2007.
[2] R. R. Wickett and M. O. Visscher, “Structure and function of the epidermal barrier,” American Journal of Infection Control, 34, s98-s110, 2006.
[3] P. C. Mills and S. E. Cross, “Transdermal drug delivery basic principles for the veterinarian,” The Veterinary Journal, 172, 218-233, 2006.
[4] C. R. Harding, “The stratum corneum: structure and function in health and disease,” Dermatologic Therapy, 17, 6-15, 2004.
[5] P. W. Wertz and B. V. D. Bergh, “The physical, chemical and functional properties of lipids in the skin and other biological barriers,” Chemistry and Physics of Lipids, 91, 85-96, 1998.
[6] T. M. Suhonen, J. A. Bouwstra and A. Urtti, “Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alternations,” Journal of Controlled Release, 59, 149-161, 1999.
[7] B. W. Barry, “Novel mechanisms and devices to enable successful transdermal drug delivery,” European Journal of Pharmaceutical Sciences, 14, 101-114, 2001.
[8] J. Hadgraft, “Modulation of the barrier function of the skin,” Skin Pharmacol Appl Skin Physio, 14(1), 72-81, 2001.
[9] S. Sobue, K. Sekiguchi, H. Kikkawa, and S. Irie, “Effect of application sites and multiple doses on nicotine pharmacokinetics in healthy male Japanese smokers following application of the transdermal nicotine patch,” J Clin Pharmacol, 45, 1391-1399, 2005.
[10] G. Sathyan, J. Jaskowiak, M. Evashenk, and S. Gupta, “Characterisation of the pharmacokinetics of the fentanyl hcl patient-controlled transdermal system (pcts): effect of current magnitude and multiple-day dosing and comparison with IV fentanyl administration,” Clinical Pharmacokinetics, 44, 7-15, 2005.
[11] B. W. Barry, “Breaching the skin’s barrier to drugs,” Nature Biotechnology, 22, 7-165, 2004.
[12] A. C. Williams and B. W. Barry, “Penetration enhancers,” Advanced Drug Delivery Reviews, 56, 603-618, 2004.
[13] S. N. Murthy, A. Sen and S. W. Hui, “Surfactant-enhanced transdermal delivery by electroporation,” Journal of Controlled Release, 98, 307-315, 2004.
[14] M. Uchida, Y. Jin, H. Natsume, D. Kobayashi, K. Sugibayashi and Y. Morimoto, “Introduction of poly-L-lactic microspheres into the skin using supersonic flow: Effects of helium gas pressure, particle size and microparticle dose on the amount introduced into hairless rat skin,” Journal of Pharmacy and Pharmacology, 54, 781-790, 2002.
[15] K. Y. Ng, “Enhancing transdermal drug transport with low-frequency,” Drug Discovery Today, 9, 913, 2004.
[16] G. Merino, Y. N. Kalia and R. H. Guy, “Ultrasound-enhanced transdermal transport,” Journal of Pharmaceutical Sciences, 92, 1125-1137, 2003.
[17] M. R. Prausnitz, “The effects of electric current applied to skin: a review for transdermal drug delivery,” Advanced Drug Delivery Reviews, 18, 395-425, 1996.
[18] A. F. Coston and J. K. Li, “Transdermal drug delivery: a comparative analysis of skin impedance models and parameters,” Proceedings of the 25th Annual Intemational Conference of the IEEE EMBS, 17-21, 2003.
[19] A. F. Coston and J. K. Li, “Iontophoresis: modeling, methodology, and evaluation,” Cardiovascular Engineering, 1, 127-136, 2001.
[20] Y. Wang, R. Thakur, Q. Fan and B. Michniak, “Transdermal iontophoresis: combination strategies to improve transdermal iontophoretic drug delivery,” European Journal of Pharmaceutics and Biopharmaceutics, 60, 179-191, 2005.
[21] Y. N. Kalia, A. Naik, J. Garrison and R. H. Guy, “Iontophoretic drug delivery,” Advanced Drug Delivery Reviews, 56, 619-658, 2004.
[22] L. M. A. Nolan, J. Corish, O. I. Corrigan and D. Fitzpatrick, “Combined effects of iontophoretic and chemical enhancement on drug delivery II. Transport across human and murine skin,” Journal of Pharmaceutics, 341, 114-124, 2007.
[23] T. W. Wong, C. H. Chen, C. C. Huang, C. D. Lin and S. W. Hui, “Painless electroporation with a new needle-free microelectrode array to enhance transdermal drug delivery,” Journal of Controlled Release, 110, 557-565, 2006.
[24] R. Vanbever, G. Langers, S. Montmayeur and V. Preat, “Transdermal delivery of fentanyl-rapid onset of analgesia using skin electroporation,” Journal of Controlled Release, 50, 225-235, 1998.
[25] A. T. Prechtel, N. M. Turza, A. A. Theodoridis, M. Kummer and A. Steinkasserer, “Small interfering RNA (siRNA) delivery into monocyte-derived dendritic cells by electroporation,” Journal of Immunological Methods, 311, 139-152, 2006.
[26] Y. L. Zhao, S. N. Murthy, M. H. Manjili, L. J. Guan, A. Sen and S. W. Hui, “Induction of cytotoxic T-lymphocytes by electroporation-enhanced needle-free skin immunization,” Vaccine, 24, 1282-1290, 2006.
[27] M. Boudes, S. Pieraut, J. Valmier, P. Carroll and F. Scamps, “Single-cell electroporation of adult sensory neurons for gene screening with RNA interference mechanism,” Journal of Neuroscience Methods, 170, 204-211, 2008.
[28] D. M. Soden, J. O. Larkin, C. G. Collins, M. Tangney, S. Aarons, J. Piggott, A. Morrissey, C. Dunne and G. C. O’Sullivan, “Successful application of targeted electrochemotherapy using novel flexible electrodes and low dose bleomycin to solid tumours,” Cancer Letters, 232, 300-310, 2006.
[29] S. W. Hui, “Low voltage electroporation of the skin, or is it iontophoresis,” Biophysical Society, 74, 679-680, 1998.
[30] K. Saito, M. Lehar, Z. B. Li, N. Braga, A. D. King, R. A. Samlan, and P. W. Flint, “High efficiency gene delivery into laryngeal muscle with bidirectional electroporation,” Otolaryngology–Head and Neck Surgery, 135, 209-214, 2006.
[31] E. Neumann, M. Schaefer-Ridder, Y. Wang and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO Journal, 1, 841-845, 1982.
[32] T. Nishi, K. Yoshizato, S. Yamashiro, H. Takeshima, K. Sato, K. Hamada, I. Kitamura, T. Yoshimura, H. Saya, J. Kuratsu and Y. Ushio, “High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation,” Cancer Research, 56, 1050-1055, 1996.
[33] J. A. Tamada, M. Lesho and M. J. Tierney, “Keeping watch on glucose,” IEEE Spectrum, 39, 52-57, 2002.
[34] A. Sen, M. E. Daly and S. W. Hui, “Transdermal insulin delivery using lipid enhanced electroporation,” Biochimica ET Biophysica Acta, 1564, 5-8, 2002.
[35] A. K. Banga, S. Bose and T. K. Ghosh, “Iontophoresis and electroporation: comparisons and contrasts,” International Journal of Pharmaceutics, 179, 1-19, 1999.
[36] M. R. Prausnitz, V. G. Bose, R. Langer and J. C. Weaver, “Electroporation of mammalian skin-a mechanism to enhance transdermal drug delivery,” The Proceedings of the National Academy of Sciences, 90, 10504-10508, 1993.
[37] L. P. Lee, S. A. Berger, D. Liepmann and L. Pruitt, “High aspect ratio polymer microstructures and cantilevers for biomems using low energy ion beam and photolithography,” Sensors and Actuators A, 71, 144-149, 1998.
[38] I. Moser, G. Jobst and G. A. Urban, “Biosensor arrays for simultaneous measurement of glucose, lactate, glutamate and glutamine,” Biosensors and Bioelectronics, 17, 297-302, 2002.
[39] L. Lauer, S. Ingebrandt, M. Scholl and A. Offenhausser, “Aligned microcontact printing of biomolecules on microelectronic device surfaces,” IEEE Transaction on Biomedical Engineering, 48, 838-842, 2001.
[40] U. Pliquett, R. Langer and J. C. Weaver, “Changes in the passive electrical properties of human stratum corneum due to electroporation,” Acta Biochimica ET Biophysica Sinica, 1239, 111-121, 1995.
[41] A. R. Denet, R. Vanbever and V. Pre’at, “Skin electroporation for transdermal and topical delivery,” Advanced Drug Delivery Reviews, 56, 659-647, 2004.
[42] A. Sharma, M. Kara, F. R. Smith and T. R. Krishnan, “Transdermal drug delivery using electroporation. I. factors influencing in vitro delivery of terazosin hydrochloride in hairless rats,” Journal of Pharmaceutical Sciences, 89, 528-535, 2000.
[43] M. S. Lee, and E. H. Kerns, “LC/MS applications in drug development,” Mass Spectrometry Reviews, 18, 187-279, 1999.
[44] Q. Chang, O. Q. P. Yin, M. S. S. Chow, “Liquid chromatography–tandem mass spectrometry method for the determination of tranexamic acid in human plasma,” Journal of Chromatography B, 805, 275-280, 2004.
[45] 陳泓毅,增進輸送效率的新型經皮輸送晶片系統之研究,國立成功大學碩士論文,民國96年。
[46] 邱林聰,經皮輸送晶片傳遞模式藥物探討皮膚滲透率之研究,國立成功大學碩士論文,民國98年。
校內:2021-12-31公開