簡易檢索 / 詳目顯示

研究生: 葉怡伶
Yeh, Yi-ling
論文名稱: 臺灣地區溫泉水中稀土元素之濃度及分布
Rare earth element concentrations and patterns in Taiwan hot springs
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 68
中文關鍵詞: 稀土元素溫泉
外文關鍵詞: HR-ICPMS, Rare earth elements, hot spring
相關次數: 點閱:86下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣地區一直持續進行溫泉的相關研究,但由於溫泉水中的稀土元素濃度相當低,且溫泉中含有許多濃度高且複雜的基質元素,因此稀土元素的量測有其難度存在。因此使用有效的純化技術以萃取樣品中的稀土元素,並降低基質干擾,才能得到更精確的分析結果。
    本研究選擇臺灣島內15個溫泉水樣,利用RE層析管柱純化溫泉水中的稀土元素(Rare earth elements),並以Sr spec樹脂純化樣品中的鍶,同時配合高解析度感應耦合電漿質譜儀(HR-ICP-MS, Element II)精確測量溫泉水中稀土元素分布、利用多通道式感應耦合電漿質譜儀(MC-ICP-MS, Neptune)測定樣品中的鍶同位素比值。RE層析管柱可移除絕大部分的鹽類基質影響,並可有效萃取水樣中的稀土元素,提高測量精確度。
    結果顯示溫泉中的稀土元素含量約在0.5ppt至29.7ppb之間,以大屯火山群溫泉最高,沈積岩區次之,變質岩地區溫泉最低。岩性差異與pH值高低可能是影響稀土元素濃度的因素之一。鍶同位素比值與稀土元素含量也指出了岩性差異與稀土元素高低的不同。而溫泉的稀土元素球粒隕石標準化分布模式主要有輕稀土富集型、重稀土富集型、接近平坦型等幾類。不同岩性的溫泉也可能出現相似的分布模式。
    本研究的溫泉依溫泉的稀土元素濃度及分布模式兩個基準,將溫泉區分出五大類型。顯示稀土元素濃度及分布可用來辨識出可能受到相似來源及化學作用的溫泉,最明顯獨特的兩群溫泉為大屯火山泉溫泉及金山、關子嶺溫泉。結果指出除了pH值外,岩性也可能影響稀土元素之濃度與分布,但稀土分布模式並非只受控於岩性因素,或許也可能受到其他特殊的化學作用影響。其中之一可能是水中的稀土元素絡合物種類。

    Although there are many previous studies on hot springs in Taiwan, only few studies discussed about the rare earth elements (REEs) of them. As the results of the low concentrations of REEs and the complicated and concentrated matrix in hot springs, the précised measuring of REEs is difficult. Hence, we try to improve the effective purification techniques to extract REEs from the hot spring samples and achieve more accurate analysis results.
    In this study, there are 15 hot spring samples collected within Taiwan. REEs were separated from the samples using RE resin and those concentrations were measured by HR-ICP-MS (Element II). Strontium in samples was isolated by using Sr spec resin and the strontium isotopic ratio was determined by MC-ICP-MS (Neptune).
    The results showed that the concentrations of REEs in hot springs are between 0.5ppt and 29.7ppt, with the highest concentrations being present in Tatun volcano group, followed by springs from sedimentary rocks and metamorphic rocks. Combined the REEs concentrations and the Sr isotopic ratios data, the results indicated that the local rock types and the pH values could affect REE patterns in hot spring. According to the REEs concentrations and patterns, hot springs are categorized into 5 types. These identify hot springs were affected by different sources or chemical reactions. The most distinct hot spring samples are from Tatun volcano、Jinshan and Guanziling hot springs. Results have shown that lithology could affect the concentration and distribution of REEs. However, the REE patterns are not only affected by lithology, but also other chemical reactions, such as the speciation of the REEs present in spring.

    中文摘要......................................I 英文摘要.....................................II 致謝........................................III 目錄.........................................IV 圖目錄.......................................VI 表目錄.....................................VIII 第一章、緒論..................................1 1.1 前言......................................1 1.2 研究動機與目的............................2 1.3 文獻探討..................................2 1.3.1.稀土元素的應用..........................2 1.3.2 自然界水系統中,稀土元素主要來源與作用..4 1.3.3 溫泉或地熱系統中,熱水之稀土元素........9 1.3.4 影響稀土元素分佈的作用.................12 第二章、研究區域.............................14 2.1 溫泉定義.................................14 2.2 臺灣地區溫泉分布狀況.....................14 2.2.1 變質岩區...............................16 2.2.2 沉積岩區...............................18 2.2.3 火成岩區...............................18 第三章、研究方法.............................22 3.1化學分析..................................22 3.1.1 實驗流程...............................22 3.1.2 RE樹脂.................................24 3.1.3 RE層析管柱分離流程.....................25 3.1.4 Sr層析管柱分離流程.....................27 3.1.5 硝酸濃度測試...........................29 3.1.6 回收率與再現性測試.....................30 3.1.7 空白值測試.............................30 3.1.8 基質效應...............................31 3.2 分析儀器.................................32 第四章、結果與討論...........................34 4.1 溫泉水中之元素濃度、鍶同位素比值.........34 4.1.1 主要元素濃度...........................34 4.1.2 稀土元素濃度...........................38 4.1.3 主要元素含量與稀土元素之關係...........40 4.1.4 溫泉水之鍶同位素.......................42 4.2 稀土元素標準化分布模式...................46 4.2.1 稀土元素分布模式:依岩性分類...........48 4.2.2 稀土元素分布模式:依分布模式分類.......52 4.3 大屯火山地區溫泉.........................59 第五章、結論.................................61 第六章、參考文獻.............................63

    英文期刊文獻
    Aubert, D., Stille, P., Probst, A., Gauthier-Lafaye, F., Pourcelot, L., Nero, M. D., 2002. Characterization and migration of atmospheric REE in soils and surface waters. Geochimica et Cosmochimica Acta, Vol. 66, No. 19, pp. 3339–3350.
    Anders, E., Grevesse, N., 1989. Abundances of the elements: meteoric and solar. Geochim. Cosmochim. Acta 53, 197–214.
    Banner, J. L., Wasserburg, G. J., Dobson, P. F., Carpenter, A. B., Moore, C. H., 1989. Isotopic and trace element constraints on the origin and evolution of saline groundwaters from central Missouri. Geochim. Cosmochim. Acta 53, 383–398.
    Bau, M., Usui, A., Pracejus, B., Mita, N., Kanai, Y., Irber, W., Dulski, P., 1998. Geochemistry of low-temperature water–rock interaction: evidence from natural waters, andesite, and iron-oxyhydroxide precipitates at Nishiki-numa iron-spring, Hokkaido, Japan. Chemical Geology, 293–307.
    Byrne, R. H., Sholkovitz, E. R., 1996. In: Gschneidner, K.A. Jr., Eyring, L.(Eds), Marine Chemistry and Geochemistry of the Lanthanides vol. 23. Elsevier, Amsterdam, pp. 497–593.
    Chen, C.H. and Chen, F.P. ,1981. Chemical properties of the thermal fluid in the Tatun geothermal system, Taiwan. 1981 IAVCEI Symposium-Arc Volcanism, Tokyo and Hakone. Abstracts, 49.
    Coppin, F., Berger, G., Berger, A., Castet, S., Loubet, M., 2002. Sorption of lanthanides on smectite and kaolinite. Chemical Geology. 182, 57–68.
    Dia, G. Gruau, G. Olivie-Lauquet, C. Riou, J. Molenat and P. Curmi, 2000. The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles, Geochim. Cosmochim. Acta 64 (24), pp. 4131–4151.
    De Baar, H.J.W., Bacon, M.P., Brewer, P.G., 1983. Rare-earth distributions with a positive Ce anomaly in the Western North Atlantic Ocean. Nature(London).301, 324–327.
    Elderfield, H. and Sholkovitz, E.R., 1987. Rare earth elements in the pore waters of reducing nearshore sediments. Earth Planet. Sci. Lett. 82, pp. 280–288.
    Esser, B.K., Volpe. A., Kenneally J. M., Smith D. K. 1994. Preconcentration and Purification of Rare Earth Elements in Natural Waters Using Silica-Immobilized 8-Hydroxyquinoline and a Supported Organophosphorus Extractant. Analytical Chemistry, 66, 1736-1742.
    García-Ruiz, S, Moldovan M, Fortunato G, Wunderli S, Alonso J., 2007. Evaluation of strontium isotope abundance ratios in combination with multi-elemental analysis as a possible tool to study the geographical origin of ciders. Analyt Chim Acta, 590, 55–66.
    Gammons, C.H., Wood, S.A., Pedrozo, F., Varekamp, J.C., Nelson, B.J., Shope, C.L., Baffico, G., 2005. Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina. Chem. Geol. 222, 249-267.
    Garcia, M. G., Lecomte, K. L., Pasquini, A. I., Formica, S. M., Depetris, P. J., 2007. Sources of dissolved REE in mountainous streams draining granitic rocks, Sierras Pampeanas (Cordoba, Argentina). Geochimica et Cosmochimica Acta 71, 5355–5368.
    Gruau, G., Dia, A., Lauquet, G.O., Davranche, M., Pinay, G., 2004. Controls on the distribution of rare earth elements in shallow groundwaters. Water Research 38, 3576–3586.
    Haas J. R., Shock, E. L., Sassani, D. C. 1995. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta, Vol. 59, No. 21, pp. 4329-4350.
    Huff, E.A. and Huff, D.R., 1993. TRU-Spec and RE-Spec Chromatography: Basic Studies and Applications. 34th ORNL/DOE Conference On Analytical Chemistry In Energy Technology. Gatlinburg TN. October 1993 (HD193).
    Janssen, R.P.T., Verweij,W., 2003. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands. Water Res. 37, 1320–1350.
    Johannesson K. H., Lyons W. B., 1995. Rare-earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories, Canada. Chemical Geology, Volume 119, Issues 1-4, 5 January 1995, Pages 209-223.
    Kulaksız, S., Bau,M.,2007. Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth and Planetary Science Letters 260, 361–371.
    Lan, C.Y.,Jahn, B.M., Mertzman, S.T. and Wu, T.W., 1996, Subduction-related granitic rocks of Taiwan: Jour. SE Asian Earth Sci. 14(1/2), 11-28.
    Lewis, A. J., Palmer, M. R., Sturchio, N. C. and Kemp, A. J., 1997. The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Geochim. Cosmochim. Acta, vol.61, p.695-706.
    Lewis, A., Komninou, A., Yardley, B. W. D., Palmer, M. R. 1998. Rare earth element speciation in geothermal fluids from Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta, Vol. 62, No. 4, pp. 657–663.
    Michard, A., 1989. Rare earth element systematics in hydrothermal fluids. Geochimica et Cosmochimica Acta 53, 745–750.
    Mőller, P., Bau, M., 1993. Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth Planet. Sci. Lett 117, 671–676.
    Mőller, P., Dulski, P., Savascin Y., Conrad M., 2004. Rare earth elements, yttrium and Pb isotope ratios in thermal spring and well waters of West Anatolia, Turkey:a hydrochemical study of their origin. Chemical Geology 206, 97– 118.
    Mőller, P., Dulski, P., Salameh, E., Geyer, S., 2006. Characterization of the sources of thermal spring- and well water in Jordan by rare earth element and yttrium distribution and stable isotopes of H2O. Acta hydrochim. hydrobiol. , 34, 101–116.
    Mőller, P., Dulski, P., Ozgur, N., 2007. Partitioning of rare earths and some major elements in the Kizildere geothermal field, Turkey. Geothermics, 37. 132–156.
    Sanada, T., Takamatsu, N., Yoshiike, Y., 2006. Geochemical interpretation of long- term variations in rare earth element concentrations in acid hot spring waters from the Tamagawa geothermal area, Japan. Geothermics. 35, 141-155.
    Shen, J.J.-S. and Yang, H.-J., 2004, Sources and genesis of the Chinkuashih Au-Cu deposits in northern Taiwan: Constraints from Os and Sr isotopic compositions of sulfides. Earth Planet. Sci. Lett., 222, 71-83.
    Tweed, S. O., Weaver, T. R., Cartwright, I., Schaefer, B., 2006. Behavior of rare earth elements in groundwater during flow and mixing in fractured rock aquifers: An example from the Dandenong Ranges, southeast Australia. Chemical Geology, 234, 291–307
    Verplanck, P. I., Nordstrom, D. K., Taylor, H. E., Kimball, B. A., 2004, Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation. Applied Geochemistry, v.19, p.1339-1354.
    Wang, K.L., Chung, S.L., O'Reilly, S.Y., Sun, S.-s., Shinjo, R. and Chen, C.H., 2004. Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution in the northern Taiwan region. Journal of Petrology 45, 975-1011.
    Worrall, F. and Pearson, D.G., 2001. The development of acidic groundwaters in coal-bearing strata. Part I. Rare earth element fingerprinting, Appl. Geochem. 16 , pp. 1465–1480.
    Yan, X. P., Kerrich, R., Hendry, M. J., 2001. Distribution of the rare earth elements in porewaters from a clay-rich aquitard sequence, Saskatchewan, Canada. Chemical Geology 176.151–172.
    Yui, T.F. and C.Y. Lan, 1991. Isotopic compositions of Tananao marble in the Tungao area, northeastern Taiwan: a chronological consideration, Spec. Pub. Central Geol. Surv., 5, 161-172.
    Yui,T.F., Heaman, L. and Lan, C.Y.,1996, U-Pb and Sr isotopic studies on granitoids from Taiwan and Chinman-Lieyü and their tectonic implications. Tectonophysics 263, 61-76.


    中文期刊文獻
    王國龍(2000),台灣北部及外海睌上新世-第四紀火山岩的地球化學特性與岩石成因。國立台灣大學地質學研究所博士論文,共169頁。
    宋聖榮(1999),大屯火山地質踏青. 臺灣博物季刊, 61期, p.31。
    宋聖榮、劉佳玫(2003),臺灣的溫泉。遠足文化,台北,共205頁。
    洪國騰(2006),台灣北部林口層紅土來源和成因之礦物學和地球化學研究。國立成功大學地球科學所碩士論文,共151頁。
    陳汝勤、黃清波(1986),臺灣東部海岸山脈安山岩與菲律賓中部安山岩之地球化學比較研究。臺灣大學海洋學刊第十七期,P156~173頁。
    陳柏淳、蕭如瑾、趙彥婷(2007),大屯火山區溫泉水質特性及砷污染問題初步探討。臺灣地球科學聯合學術研討會。
    陳肇夏 (1975),台灣溫泉成因與地熱探勘之我見。地質,第一卷,第二期,第107-117頁。
    陳肇夏 (1982),地熱地質與探勘。貞觀出版社,共115頁。
    陳肇夏 (1989),台灣的溫泉和地熱。地質,第九卷,第二期,第327-340頁。
    陳肇夏(2000),臺灣經濟礦物第三卷臺灣能源礦產及地下水資源。經濟部中央地質調查所,217頁。
    莊文星(1999),台灣之火山活動與火成岩。國立自然科學博物館,共324頁。
    劉康克,余震甫,謝越寧,陳隆輝,胡瑾瑜,江新春 (1982) 宜蘭縣清水地熱區碳氫氧同位素地球化學之研究。中央研究院地球科學研究所研究報告,共73頁。
    劉康克、陳中華、謝越寧、江新春(1984) 台北市大屯山地熱區碳氫氧同位素之研究。中央研究院地球科學研究所研究報告ASIES-CR 8401,39 頁
    鐘小良(2002),二仁溪河水地球化學和同位素初探。成功大學地球科學所碩士論文共85頁。
    礦業研究所 (1975) 台灣地熱資源探勘工作報告之一。礦業研究所研究報告,第一百四十六號。
    礦業研究所 (1977) 台灣地熱資源探勘工作報告之二。礦業研究所研究報告,第一百六十三號。
    礦業研究所 (1978) 台灣地熱資源探勘工作報告之三。礦業研究所研究報告,第一百七十號。
    礦業研究所 (1979) 台灣地熱資源探勘工作報告之四。礦業研究所研究報告,第一百七十四號。
    礦業研究所(1980)台灣地熱資源探勘工作報告之五。礦業研究所研究報告181 號,共47 頁。

    參考網站
    Eichrom Technologies。 http://www.eichrom.com/
    中央地質調查所網站。 http://www.moeacgs.gov.tw/main.jsp/

    下載圖示 校內:2010-07-25公開
    校外:2011-07-25公開
    QR CODE