| 研究生: |
王啟華 Wang, Chi-Hua |
|---|---|
| 論文名稱: |
利用石墨烯貼附與真空退火提升WZO薄膜光電性質的研究 Graphene layer and vacuum annealing to improve the optical and electrical properties of WZO thin films |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 透明導電薄膜(TCF) 、氧化鋅(Zinc oxide) 、摻雜(Doping) 、近紅外穿透(Near infrared Transmittance) 、石墨烯(Graphene) 、化學氣相沉積(CVD) 、真空退火(Vacuum annealing) |
| 外文關鍵詞: | Transparent conductive films (TCF), Zinc oxide (ZnO), Doping, Near-infrared transmittance, Graphene, chemical vapor deposition (CVD), Vacuum annealing |
| 相關次數: | 點閱:58 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以德魯德-勞倫斯模型為基礎,在本次研究中透過控制適當載子濃度使透明導電薄膜具有高近紅外區域的穿透率,同時使用石墨烯貼附以及真空環境退火來增加透明導電薄膜的導電性。本研究使用鎢(Tungsten)作為氧化鋅的摻雜金屬,簡稱WZO透明導電薄膜,因鎢具有高價數與跟鋅相近的離子半徑兩個優點,使得少量摻雜就能給予適當載子濃度,且能完整保留原始ZnO結構,降低摻雜物的離子雜質散射(Ionized impurity scattering)。透過射頻磁控濺鍍機濺鍍WZO於玻璃基板上,從結果中來看,WZO相比目前市面上的AZO透明導電薄膜,在近紅外光區域(1501~2500nm)平均穿透率高出30%,是本次研究的一項突破。將WZO進行兩種石墨烯貼附,一種是貼附於玻璃基板與WZO之間(WZO+G(B)),另一種貼附在WZO正上方(WZO+G(T)),透過拉曼、TEM與光學分析,發現WZO+G(B)由於石墨烯經過濺鍍流程,造成石墨烯受到中性氣體撞擊破壞。反觀WZO+G(T)則因無參與濺鍍流程而保有完好石墨烯,並且呈現本次透明導電薄膜最低電阻率,值為2.76×10^(-3)Ω・cm,穿透率在可見與紅外光區平均分別為81.27%與81.68%。
真空退火影響WZO內部微結構在(002)結晶方向鍵長以及晶體平面距離,而X-ray繞射儀則顯示晶體主要結晶方向與該方向晶體大小變化。透過化學分析電子光譜儀了解內部原子鍵結形式,從中得知氧空缺與導電性呈正相關。最後分析光學並透過伯斯-莫斯坦定理得到能隙值與載子濃度之間成正比關係,本次真空退火WZO在退火溫度達到200℃時具有最低電阻率,值為2.96×10^(-3)Ω・cm,穿透率在可見與紅外光區平均分別為84.75%與85.49%。
According to Drude-Lorentz model theory, it can be known that decreasing carrier concentration and increasing semiconductor dielectric constant can add near-infrared transmittance of Transparent conductive oxides (TCO). In order to improve the conductivity, graphene layer and vacuum annealing can reduce the resistivity effectively. In this case, we use Tungsten-doped Zinc oxide (WZO) to control Carrier concentration. Doping of tungsten can not only controls the carrier concentration, but also reduces ionized impurity scattering to improve mobility. The results show that WZO has 30% higher near-infrared light transmittance than AZO (Aluminum-doped Zinc oxide).
Use graphene to increase the electrical properties. There are two ways to attach graphene in WZO. First, graphene attaches between WZO and glass substrate (WZO+G(B)). Second, graphene attaches on WZO (WZO+G(T)). The results show that WZO+G(B) is destroyed by high energy Ar*. On the other hand, WZO+G(T) has favorable and complete graphene. WZO+G(T) has the lowest resistivity in this research, with a value of 2.76×10^(-3)Ω・cm. The transmittance in the visible light (VIS) and near-infrared (NIR) are 81.27% and 81.68% respectively.
Use vacuum annealing to decrease the WZO bulk resistivity. According to TEM, XRD, XPS, Hall effect, Spectrometer can know structure, crystal orientation, surface roughness, electrical properties, and Optical properties. The results show that WZO has (002) preferred orientation. When the annealing temperature reaches 200℃, it has the lowest resistivity in the vacuum annealing series, and its value is 2.96×10^(-3)Ω・cm. The transmittance in the visible light (VIS) and near-infrared (NIR) are 84.75% and 85.49% respectively.
[1] 游家豪 and 張立, "射頻濺鍍氧化鋅薄膜於鍺基板之研究," 2006.
[2] K. Baedeker, "Electrical conductivity and thermoelectric power of some heavy metal compounds," Ann. Phys, vol. 22, p. 749, 1907.
[3] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor Science and Technology, vol. 20, no. 4, p. S35, 2005.
[4] S. Devasia, P. Athma, M. Shaji, M. S. Kumar, and E. Anila, "Post-deposition thermal treatment of sprayed ZnO: Al thin films for enhancing the conductivity," Physica B: Condensed Matter, vol. 533, pp. 83-89, 2018.
[5] S. Bai and T.-Y. Tseng, "Effect of alumina doping on structural, electrical, and optical properties of sputtered ZnO thin films," Thin Solid Films, vol. 515, no. 3, pp. 872-875, 2006.
[6] 郭帅, 杨磊, 代兵, 耿方娟, 杨振怀, 王鹏, 雷沛, 韩杰才, and 朱嘉琦, "载流子浓度与迁移率对氧化物薄膜红外透明导电性能影响的研究进展," 中国科学: 技术科学, vol. 48, pp. 583-595, 2018.
[7] A. Mallick and D. Basak, "Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs," Progress in Materials Science, vol. 96, pp. 86-110, 2018.
[8] M. Yang, J. Feng, G. Li, and Q. Zhang, "Tungsten-doped In2O3 transparent conductive films with high transmittance in near-infrared region," Journal of Crystal Growth, vol. 310, no. 15, pp. 3474-3477, 2008.
[9] Y.-T. Li, D.-T. Chen, C.-F. Han, and J.-F. Lin, "Effect of the addition of zirconium on the electrical, optical, and mechanical properties and microstructure of ITO thin films," Vacuum, vol. 183, p. 109844, 2021.
[10] X. Zheng, "The influence of ion implantation-induced oxygen vacancy on electrical conductivity of WO3 thin films," Vacuum, vol. 165, pp. 46-50, 2019.
[11] K. Ravichandran, A. J. Santhosam, and M. Sridharan, "Effect of tungsten doping on the ammonia vapour sensing ability of ZnO thin films prepared by a cost effective simplified spray technique," Surfaces and Interfaces, vol. 18, p. 100412, 2020.
[12] C. Zhang, X.-l. Chen, X.-h. Geng, C.-s. Tian, Q. Huang, Y. Zhao, and X.-d. Zhang, "Temperature-dependent growth and properties of W-doped ZnO thin films deposited by reactive magnetron sputtering," Applied Surface Science, vol. 274, pp. 371-377, 2013.
[13] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, no. 5932, pp. 1312-1314, 2009.
[14] S. Fernández, A. Boscá, J. Pedrós, A. Inés, M. Fernández, I. Arnedo, J. P. González, M. de la Cruz, D. Sanz, and A. Molinero, "Advanced graphene-based transparent conductive electrodes for photovoltaic applications," Micromachines, vol. 10, no. 6, p. 402, 2019.
[15] 謝坤晉, "退火處理對於氧化銦鎵鋅 (IGZO)/鈦 (Ti)/石墨烯 (Graphene)/聚醯亞胺 (Polyimide) 組合式薄膜之顯微結構及光電特性之研究," 1-142, 2017.
[16] O. Nennewitz, H. Schmidt, J. Pezoldt, T. Stauden, J. Schawohl, and L. Spiess, "Rapid thermal annealing of thin ZnO films," Physica Status Solidi (a), vol. 145, no. 2, pp. 283-288, 1994.
[17] G. Fang, D. Li, and B.-L. Yao, "Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering," Vacuum, vol. 68, no. 4, pp. 363-372, 2002.
[18] C. H. Stuart Bowden. (5/28). Pveducation-4.1 Ideal Solar Cells-light Generated Current [Online]. Available: https://www.pveducation.org/pvcdrom/solar-cell-operation/light-generated-current.
[19] R. Levinson, P. Berdahl, and H. Akbari, "Solar spectral optical properties of pigments—Part I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements," Solar Energy Materials and Solar Cells, vol. 89, no. 4, pp. 319-349, 2005.
[20] N. E. I. Boukortt, S. Patanè, and Y. M. Abdulraheem, "Numerical investigation of CIGS thin-film solar cells," Solar Energy, vol. 204, pp. 440-447, 2020.
[21] O. Madelung, M. Schulz, and H. Weiss, "Intrinsic properties of group IV elements and III-V, II-VI and I-VII compounds," Landolt-Bornstei, New Series, Group III, 1987.
[22] 陳巧欣, "以反應濺鍍法製備氧化鋅薄膜及其摻雜研究," 中山大學材料與光電科學學系研究所學位論文, pp. 1-72, 2015.
[23] K. Ellmer, A. Klein, and B. Rech, "Transparent conductive zinc oxide: basics and applications in thin film solar cells," p. 6, 2007.
[24] D. Raimondi and E. Kay, "High resistivity transparent ZnO thin films," Journal of Vacuum Science and Technology, vol. 7, no. 1, pp. 96-99, 1970.
[25] G. Müller and R. Helbig, "Über den Einbau von Kupfer in ZnO-Einkristallen," Journal of Physics and Chemistry of Solids, vol. 32, no. 8, 1971.
[26] R. Helbig, "Über die züchtung von grösseren reinen und dotierten ZnO-kristallen aus der gasphase," Journal of Crystal Growth, vol. 15, no. 1, pp. 25-31, 1972.
[27] A. Janotti and C. G. Van de Walle, "Native point defects in ZnO," Physical Review B, vol. 76, no. 16, p. 165202, 2007.
[28] S. Mandal, A. Basak, and U. P. Singh, "Effect of post annealing on the properties of aluminium doped Zinc oxide thin films deposited by DC sputtering," Materials Today: Proceedings, vol. 39, pp. 1821-1828, 2020.
[29] Y. Ammaih, A. Lfakir, B. Hartiti, A. Ridah, P. Thevenin, and M. Siadat, "Structural, optical and electrical properties of ZnO: Al thin films for optoelectronic applications," Optical and Quantum Electronics, vol. 46, no. 1, pp. 229-234, 2014.
[30] V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G. Lashkarev, B. Svensson, and R. Yakimova, "Structural and morphological properties of ZnO: Ga thin films," Thin Solid Films, vol. 515, no. 2, pp. 472-476, 2006.
[31] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. Costa, and R. Martins, "Influence of the deposition pressure on the properties of transparent and conductive ZnO: Ga thin-film produced by rf sputtering at room temperature," Thin Solid Films, vol. 427, no. 1-2, pp. 401-405, 2003.
[32] B. Pawar, S. Jadkar, and M. Takwale, "Deposition and characterization of transparent and conductive sprayed ZnO: B thin films," Journal of Physics and Chemistry of Solids, vol. 66, no. 10, pp. 1779-1782, 2005.
[33] Y. Hagiwara, T. Nakada, and A. Kunioka, "Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO: B window layer," Solar Energy Materials and Solar Cells, vol. 67, no. 1-4, pp. 267-271, 2001.
[34] M. de la L Olvera, A. Maldonado, and R. Asomoza, "ZnO: F thin films deposited by chemical spray: effect of the fluorine concentration in the starting solution," Solar Energy Materials and Solar Cells, vol. 73, no. 4, pp. 425-433, 2002.
[35] J. Hu and R. G. Gordon, "Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells," Solar Cells, vol. 30, no. 1-4, pp. 437-450, 1991.
[36] P. R. Kumar, C. S. Kartha, K. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh, and D. Avasthi, "On the properties of indium doped ZnO thin films," Semiconductor Science and Technology, vol. 20, no. 2, p. 120, 2004.
[37] S. Major, A. Banerjee, and K. Chopra, "Highly transparent and conducting indium-doped zinc oxide films by spray pyrolysis," Thin Solid Films, vol. 108, no. 3, pp. 333-340, 1983.
[38] Q. Zhang, X. Li, and G. Li, "Dependence of electrical and optical properties on thickness of tungsten-doped indium oxide thin films," Thin Solid Films, vol. 517, no. 2, pp. 613-616, 2008.
[39] H. Zhang, H. Liu, C. Lei, C. Yuan, and A. Zhou, "Tungsten-doped ZnO transparent conducting films deposited by direct current magnetron sputtering," Vacuum, vol. 85, no. 2, pp. 184-186, 2010.
[40] Z. Huafu, Y. Shugang, L. Hanfa, and Y. Changkun, "Preparation and characterization of transparent conducting ZnO: W films by DC magnetron sputtering," Journal of Semiconductors, vol. 32, no. 4, p. 043002, 2011.
[41] Z. Pei, C. Sun, M. Tan, J. Xiao, D. Guan, R. Huang, and L. Wen, "Optical and electrical properties of direct-current magnetron sputtered ZnO: Al films," Journal of Applied Physics, vol. 90, no. 7, pp. 3432-3436, 2001.
[42] B. Ngom, T. Mpahane, N. Manyala, O. Nemraoui, U. Buttner, J. Kana, A. Fasasi, M. Maaza, and A. Beye, "Structural and optical properties of nano-structured tungsten-doped ZnO thin films grown by pulsed laser deposition," Applied Surface Science, vol. 255, no. 7, pp. 4153-4158, 2009.
[43] Q. Fu, W. Wang, D. Li, and J. Pan, "Research on surface modification and infrared emissivity of In2O3: W thin films," Thin Solid Films, vol. 570, pp. 68-74, 2014.
[44] A. O’Hare, F. Kusmartsev, and K. Kugel, "A Stable “Flat ″Form of Two-Dimensional Crystals: Could Graphene, Silicene, Germanene Be Minigap Semiconductors?," Nano letters, vol. 12, no. 2, pp. 1045-1052, 2012.
[45] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-669, 2004.
[46] A. K. Geim and K. S. Novoselov, "The rise of graphene," in Nanoscience and technology: a collection of reviews from nature journals: World Scientific, 2010, pp. 11-19.
[47] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science, vol. 320, no. 5881, pp. 1308-1308, 2008.
[48] J.-H. Chen, C. Jang, S. Adam, M. Fuhrer, E. D. Williams, and M. Ishigami, "Charged-impurity scattering in graphene," Nature Physics, vol. 4, no. 5, pp. 377-381, 2008.
[49] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, and AA, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, no. 7065, pp. 197-200, 2005.
[50] N. Savage, "Graphene makes transistors tunable," Ieee Spectrum, vol. 46, no. 9, pp. 20-20, 2009.
[51] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, no. 3, pp. 902-907, 2008.
[52] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, no. 5887, pp. 385-388, 2008.
[53] M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, "Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure," Physical Chemistry Chemical Physics, vol. 13, no. 46, pp. 20836-20843, 2011.
[54] H. Kim, C. Mattevi, M. R. Calvo, J. C. Oberg, L. Artiglia, S. Agnoli, C. F. Hirjibehedin, M. Chhowalla, and E. Saiz, "Activation energy paths for graphene nucleation and growth on Cu," ACS nano, vol. 6, no. 4, pp. 3614-3623, 2012.
[55] K. Xiao, H. Wu, H. Lv, X. Wu, and H. Qian, "The study of the effects of cooling conditions on high quality graphene growth by the APCVD method," Nanoscale, vol. 5, no. 12, pp. 5524-5529, 2013.
[56] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, and Y. Zhang, "Direct chemical vapor deposition of graphene on dielectric surfaces," Nano letters, vol. 10, no. 5, pp. 1542-1548, 2010.
[57] N. S. Mueller, A. J. Morfa, D. Abou-Ras, V. Oddone, T. Ciuk, and M. Giersig, "Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition," Carbon, vol. 78, pp. 347-355, 2014.
[58] H. A. Lorentz, Over het verband tusschen de voortplantingssnelheid van het licht en de dichtheid en samenstelling der middenstoffen. Van der Post, 1878.
[59] H. A. Lorentz, The theory of electrons and its applications to the phenomena of light and radiant heat. GE Stechert & Company, 1916.
[60] I. Almog, M. Bradley, and V. Bulovic, "The Lorentz oscillator and its applications," Massachusetts Institute of Technology, p. 4, 2011.
[61] 楊明輝, 透明導電膜. 藝軒, 2012.
[62] K. Chopra, S. Major, and D. Pandya, "Transparent conductors—a status review," Thin solid films, vol. 102, no. 1, pp. 1-46, 1983.
[63] S. Kulaszewicz, W. Jarmoc, I. Lasocka, Z. Lasocki, C. Michalski, and K. Turowska, "Thin transparent In2O3: Sn films as IR filters," Thin Solid Films, vol. 148, no. 1, pp. L55-L57, 1987.
[64] J. W. Cleary, M. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, "Mid-to long-wavelength infrared surface plasmon properties in doped zinc oxides," in Optical Materials and Biomaterials in Security and Defence Systems Technology IX, 2012, vol. 8545: International Society for Optics and Photonics, p. 854504.
[65] T. J. Coutts, D. L. Young, and X. Li, "Characterization of transparent conducting oxides," Mrs Bulletin, vol. 25, no. 8, pp. 58-65, 2000.
[66] M. Fox, "Optical Properties of Solids (New York: Oxford Univer," ed: sity Press) p143, 2001.
[67] K. Ellmer, "Past achievements and future challenges in the development of optically transparent electrodes," Nature Photonics, vol. 6, no. 12, pp. 809-817, 2012.
[68] P. J. McNally, S. Singh, H. Zeng, C. Guo, and W. Cai, "Raman Spectroscopy: Basics and Applications," Edited by Subhash Chandra Singh, Haibo Zeng, Chunlei Guo, and Weiping Cai, 2012.
[69] J. Pinto, "Cancer Classification in Human Brain and Prostate Using Raman Spectroscopy and Machine Learning," University of Waterloo, 2017.
[70] W.-n. Miao, X.-f. Li, Q. Zhang, L. Huang, Z.-J. Zhang, L. Zhang, and X.-j. Yan, "Transparent conductive In2O3: Mo thin films prepared by reactive direct current magnetron sputtering at room temperature," Thin Solid Films, vol. 500, no. 1-2, pp. 70-73, 2006.
[71] G. Jauncey, "The scattering of x-rays and Bragg's law," Proceedings of the National Academy of Sciences of the United States of America, vol. 10, no. 2, p. 57, 1924.
[72] A. Monshi, M. R. Foroughi, and M. R. Monshi, "Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD," World Journal of Nano Science and Engineering, vol. 2, no. 3, pp. 154-160, 2012.
[73] P. Scherrer, "Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen (1918) in: X-ray Diffraction Methods in Polymer Science, Ed," LE Alexander, 1969.
[74] (5/10). 微奈米中心全部儀器列表 [Online]. Available: http://cmnst.ncku.edu.tw/p/412-1006-13238.php?Lang=zh-tw.
[75] 羅吉宗, 薄膜科技與應用. 全華圖書, 2013, pp. 1-448.
[76] M. B. S Niza, A. H. Nur Hamidah, M. N. Mohammad Nuzaihan, and H. Uda, "PMMA characterization and optimization for Nano Structure formation," pp. 81-83, 2005.
[77] 國立成功大學-儀器設備中心. (Apr 23). 霍爾效應分析儀 [Online]. Available: http://b8c003.web3.ncku.edu.tw/p/412-1063-12852.php?Lang=zh-tw.
[78] F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, and L. Zhuge, "Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films," Vacuum, vol. 89, pp. 127-131, 2013.
[79] S. Roscher, R. Hoffmann, and O. Ambacher, "Determination of the graphene–graphite ratio of graphene powder by Raman 2D band symmetry analysis," Analytical Methods, vol. 11, no. 9, pp. 1224-1228, 2019.
[80] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition," Nano letters, vol. 9, no. 1, pp. 30-35, 2009.
[81] V. V. Quang, N. S. Trong, N. N. Trung, N. D. Hoa, N. V. Duy, and N. V. Hieu, "Full-layer controlled synthesis and transfer of large-scale monolayer graphene for nitrogen dioxide and ammonia sensing," Analytical Letters, vol. 47, no. 2, pp. 280-294, 2014.
[82] X. P. Qiu, Y. J. Shin, J. Niu, N. Kulothungasagaran, G. Kalon, C. Qiu, T. Yu, and H. Yang, "Disorder-free sputtering method on graphene," AIP Advances, vol. 2, no. 3, p. 032121, 2012.
[83] P. Ahlberg, F. Johansson, Z.-B. Zhang, U. Jansson, S.-L. Zhang, A. Lindblad, and T. Nyberg, "Defect formation in graphene during low-energy ion bombardment," APL Materials, vol. 4, no. 4, p. 046104, 2016.
[84] H. Swanson, R. Fuyat, and G. Ugrinic, "US Natl. Bur. Stand. Circ., 1953," International Centre for Diffraction Data, Powder Diffraction File, Entry, pp. 5-685, 1996.
[85] Z.-N. Ng, K.-Y. Chan, and T. Tohsophon, "Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique," Applied Surface Science, vol. 258, no. 24, pp. 9604-9609, 2012.
[86] C. Guillen and J. Herrero, "Optical, electrical and structural characteristics of Al: ZnO thin films with various thicknesses deposited by DC sputtering at room temperature and annealed in air or vacuum," Vacuum, vol. 84, no. 7, pp. 924-929, 2010.
[87] H. Al-Kandari, F. Al-Kharafi, N. Al-Awadi, O. El-Dusouqui, and A. Katrib, "Surface electronic structure–catalytic activity relationship of partially reduced WO3 bulk or deposited on TiO2," Journal of Electron Spectroscopy and Related Phenomena, vol. 151, no. 2, pp. 128-134, 2006.
[88] 胡竣傑, "室溫濺鍍氧化鋅薄膜之發光特性研究," 2005.
[89] S.-Y. Kuo, W.-C. Chen, and C.-P. Cheng, "Investigation of annealing-treatment on the optical and electrical properties of sol–gel-derived zinc oxide thin films," Superlattices and Microstructures, vol. 39, no. 1-4, pp. 162-170, 2006.
[90] 田民波, 薄膜技術與薄膜材料. 五南, 2007, pp. 1-1183.
[91] Y. Liu, S. Tung, and J. Hsieh, "Influence of annealing on optical properties and surface structure of ZnO thin films," Journal of Crystal Growth, vol. 287, no. 1, pp. 105-111, 2006.
[92] S. Gahlawat, J. Singh, A. K. Yadav, and P. P. Ingole, "Exploring Burstein–Moss type effects in nickel doped hematite dendrite nanostructures for enhanced photo-electrochemical water splitting," Physical Chemistry Chemical Physics, vol. 21, no. 36, pp. 20463-20477, 2019.
[93] J. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Ye, Y. Zeng, Y. Zhang, and L. Zhu, "Carrier concentration dependence of band gap shift in n-type ZnO: Al films," Journal of Applied Physics, vol. 101, no. 8, p. 083705, 2007.