| 研究生: |
陳玉清水 Tran, Ngoc Thanh Thuy |
|---|---|
| 論文名稱: |
石墨烯系統化學鍵結誘導的豐富電子性質 Chemical Bondings Enrich Electronic Properties of Graphene-based Systems |
| 指導教授: |
林明發
Lin, Ming-Fa |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 電子性能 、化學鍵合 、氧化石墨烯 、氫化石墨烯 、鹵化石墨烯 |
| 外文關鍵詞: | electronic properties, chemical bondings, graphene oxides, hydrogenated graphenes, halogenated graphenes |
| 相關次數: | 點閱:84 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用第一原理計算方法研究及回顧了石墨烯系統化學鍵結誘導的豐富性質。其中幾何與電子性質受層數,堆疊排列,滑移造成排列轉換和獨特吸附原理影響之下產生極大的改變。尤其是對於氫和氟頂部吸附原子可以顯著地誘導彎曲結構。電子結構是由碳原子和(碳原子)所組成的能帶,存在線性、拋物線、扁平、寬邊形和振盪能帶,伴隨著局部臨界點。藉由碳與吸附原子間多軌道或單軌道化學鍵的改變,影響了石墨烯系統為半金屬或半導體的特性。石墨烯氧化物和氫化石墨烯具有可調控的能隙。氟化石墨烯可以是半導體或空穴摻雜金屬,而其它鹵化系統屬於後者。氫化與鹵化的石墨烯顯示了某些分佈下鐵磁自旋配置。最後討論結構與原子豐富基本性質並與實驗測量進行相互比較,也探討潛在的應用。
This dissertation presents a systematic review of the feature-rich essential properties in graphene-related systems using the first-principles method. The geometric and electronic properties are greatly diversified by the number of layers, the stacking configurations, the sliding-created configuration transformation, and the distinct adatom adsorptions. The top-site adsorptions can induce the significantly buckled structures, especially for hydrogen and fluorine adatoms. The electronic structures consist of the carbon-, adatom- and (carbon,adatom)-dominated energy bands. There exist the linear, parabolic, partially flat, sombrero-shaped and oscillatory band, accompanied with various kinds of critical points. The semimetallic or semiconducting behaviors of graphene systems are dramatically changed by the multi- or single-orbital chemical bondings between carbons and adatoms. Graphene oxides
and hydrogenated graphenes possess the tunable energy gaps. Fluorinated graphenes might be semiconductors or hole-doped metals, while other halogenated systems belong to the latter. The ferromagnetic spin configuration is revealed in hydrogenated and halogenated graphenes under certain distributions. Structure- and adatom-enriched essential properties are compared with the experimental measurements, and potential applications are also discussed.
[1] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, “Diamond synthesis from gas phase in microwave plasma,” J. Crystal Growth, vol. 62, no. 3, pp. 642–644, 1983.
[2] F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys., vol. 53, no. 3, pp. 1126–1130, 1970.
[3] C. Huang, M. Lin, D. Chuu et al., “Collective excitations in graphite layers,” Solid State commun., vol. 103, no. 11, pp. 603–606, 1997.
[4] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
[5] K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. K. I. Grigorieva, S. Dubonos, and A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005.
[6] Y. W. Son, M. L. Cohen, and S. G. Louie, “Half-metallic graphene nanoribbons," Nature, vol. 444, no. 7117, pp. 347–349, 2006.
[7] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,”Science, vol. 319, no. 5867, pp. 1229–1232,
2008.
[8] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng et al., “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature, vol. 466, no. 7305, pp. 470–473, 2010.
[9] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991.
[10] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603–605, 1993.
[11] W. A. De Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science, vol. 270, no. 5239, pp. 1179–1180, 1995.
[12] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman et al., “Fullerene pipes,” Science, vol. 280, no. 5367, pp. 1253–1256, 1998.
[13] L. Zhang, Y. Zhang, J. Camacho, M. Khodas, and I. Zaliznyak, “The experimental observation of quantum hall effect of l= 3 chiral quasiparticles in trilayer graphene,”
Nat. Phys., vol. 7, no. 12, pp. 953–957, 2011.
[14] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, no. 9, pp. 351–355, 2008.
[15] T. Chen, Y. Xue, A. K. Roy, and L. Dai, “Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes,” ACS Nano, vol. 8, no. 1, pp. 1039–1046, 2013.
[16] J. U. Lee, D. Yoon, and H. Cheong, “Estimation of young’s modulus of graphene by raman spectroscopy,” Nano Lett., vol. 12, no. 9, pp. 4444–4448, 2012.
[17] Z. S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H. M. Cheng, “Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation,” ACS Nano, vol. 3, no. 2, pp. 411–417, 2009.
[18] Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. Thong, “Probing layer number and stacking order of few-layer graphene by raman spectroscopy,” Small, vol. 6, no. 2, pp. 195–200, 2010. 93
[19] W. Bao, L. Jing, J. Velasco Jr, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. Cronin, D. Smirnov et al.,“Stacking-dependent band gap and quantum transport in trilayer graphene,” Nat. Phys., vol. 7, no. 12, pp. 948–952, 2011.
[20] J. H. Wong, B. R. Wu, and M. F. Lin, “Strain effect on the electronic properties of single layer and bilayer graphene,” J. Phys. Chem. C, vol. 116, no. 14, pp. 8271–8277,
2012.
[21] Y. W. Son, S. M. Choi, Y. P. Hong, S. Woo, and S. H. Jhi, “Electronic topological transition in sliding bilayer graphene,” Phys. Rev. B, vol. 84, no. 15, p. 155410, 2011.
[22] N. T. T. Tran, S.-Y. Lin, O. E. Glukhova, and M.-F. Lin, “Configuration-induced rich electronic properties of bilayer graphene,” J. Phys. Chem. C, vol. 119, no. 19, pp. 10 623–10 630, 2015.
[23] N. T. T. Tran, S. Y. Lin, Y. T. Lin, and M. F. Lin, “Chemical bonding-induced rich electronic properties of oxygen adsorbed few-layer graphenes,” Phys. Chem. Chem. Phys., vol. 18, no. 5, pp. 4000–4007, 2016.
[24] K. Nakada and A. Ishii, “Migration of adatom adsorption on graphene using dft calculation, Solid State Commun., vol. 151, no. 1, pp. 13–16, 2011.
[25] H. Gao, J. Zhou, M. Lu, W. Fa, and Y. Chen, “First-principles study of the iva group atoms adsorption on graphene,” J. Appl. Phys., vol. 107, no. 11, p. 114311, 2010.
[26] J. Dai and J. Yuan, “Adsorption of molecular oxygen on doped graphene: Atomic, electronic, and magnetic properties,” Phys. Rev. B, vol. 81, no. 16, p. 165414, 2010.
[27] J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electron-phonon coupling in graphene,” Phys. Rev. Lett., vol. 98, no. 16, p. 166802, 2007.
[28] M. Goerbig, “Electronic properties of graphene in a strong magnetic field,” Rev. Modern Phys., vol. 83, no. 4, p. 1193, 2011.
[29] J. K. Lee, S. C. Lee, J. P. Ahn, S. C. Kim, J. I.Wilson, and P. John, “The growth of AA graphite on (111) diamond.” J. Chem. Phys., vol. 129, no. 23, pp. 234 709–234 709, 2008.
[30] C. Coletti, S. Forti, A. Principi, K. V. Emtsev, A. A. Zakharov, K. M. Daniels, B. K. Daas, M. Chandrashekhar, T. Ouisse, D. Chaussende et al., “Revealing the electronic
band structure of trilayer graphene on SiC: An angle-resolved photoemission study," Phys. Rev. B, vol. 88, no. 15, p. 155439, 2013.
[31] T. Ohta, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg,“Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy,” Phys. Rev. Lett., vol. 98, no. 20, p. 206802, 2007.
[32] W. Norimatsu and M. Kusunoki, “Selective formation of ABC-stacked graphene layers on SiC (0001),” Phys. Rev. B, vol. 81, no. 16, p. 161410, 2010.
[33] Z. Y. Rong and P. Kuiper, “Electronic effects in scanning tunneling microscopy: Moir´e pattern on a graphite surface,” Phys. Review. B, vol. 48, no. 23, p. 17427, 1993.
[34] P. Xu, Y. Yang, D. Qi, S. Barber, J. Schoelz, M. Ackerman, L. Bellaiche, and P. Thibado, “Electronic transition from graphite to graphene via controlled movement of the top layer with scanning tunneling microscopy,” Phys. Rev. B, vol. 86, no. 8, p. 085428, 2012.
[35] W. T. Pong, J. Bendall, and C. Durkan, “Observation and investigation of graphite superlattice boundaries by scanning tunneling microscopy,” Surf. Sci., vol. 601, no. 2, pp. 498–509, 2007.
[36] A. S. Kazemi, S. Crampin, and A. Ilie, “Stacking-dependent superstructures at stepped
armchair interfaces of bilayer/trilayer graphene,” Appl. Phys. Lett., vol. 102, no. 16, p. 163111, 2013.
[37] Q. Li, Z. Ni, J. Gong, D. Zhu, and Z. Zhu, “Carbon nanotubes coated by carbon nanoparticles of turbostratic stacked graphenes,” Carbon, vol. 46, no. 3, pp. 434–439, 2008.
[38] D. R. Lenski and M. S. Fuhrer, “Raman and optical characterization of multilayer turbostratic graphene grown via chemical vapor deposition,” J. Appl. Phys., vol. 110, no. 1, p. 013720, 2011.
[39] C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, and M. F. Lin, “Low-energy electronic properties of the AB-stacked few-layer graphites,” J. Phys. Condens. Matter, vol. 18, no. 26, p. 5849, 2006.
[40] K. F. Mak, J. Shan, and T. F. Heinz, “Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence,” Phys. Rev. Lett.
[41] Y. Mohammadi, R. Moradian, and F. S. Tabar, “Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene,” Solid State Commun., vol. 193, pp. 1–5, 2014.
[42] C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. L. Lin, “Influence of an electric field on the optical properties of few-layer graphene with AB stacking,” Phys. Rev. B, vol. 73, no. 14, p. 144427, 2006.
[43] T. N. Do, P. H. Shih, C. P. Chang, C. Y. Lin, and M. F. Lin, “Rich magneto-absorption spectra in AAB-stacked trilayer graphene,” Phys. Chem. Chem. Phys., vol. 18, no. 26, pp. 17 597–605, 2016.
[44] S. Yuan, H. De Raedt, and M. I. Katsnelson, “Electronic transport in disordered bilayer and trilayer graphene,” Phys. Rev. B, vol. 82, no. 23, p. 235409, 2010.
[45] T. Khodkov, F.Withers, D. C. Hudson, M. F. Craciun, and S. Russo, “Electrical transport in suspended and double gated trilayer graphene,” Appl. Phys. Lett., vol. 100, no. 1, p. 013114, 2012.
[46] J.-A. Yan, W. Ruan, and M. Chou, “Electron-phonon interactions for optical-phonon modes in few-layer graphene: First-principles calculations,” Phys. Rev. B, vol. 79, no. 11, p. 115443, 2009.
[47] C. Cong, J. Jung, B. Cao, C. Qiu, X. Shen, A. Ferreira, S. Adam, and T. Yu, “Magnetic oscillation of optical phonon in ABA-and ABC-stacked trilayer graphene,” Phys. Rev. B, vol. 91, no. 23, p. 235403, 2015.
[48] M. Aoki and H. Amawashi, “Dependence of band structures on stacking and field in layered graphene,” Solid State Commun., vol. 142, no. 3, pp. 123–127, 2007.
[49] F. Zhang, B. Sahu, H. Min, and A. H. MacDonald, “Band structure of ABC-stacked graphene trilayers,” Phys. Rev. B, vol. 82, no. 3, p. 035409, 2010.
[50] D. A. Siegel, W. Regan, A. V. Fedorov, A. Zettl, and A. Lanzara, “Charge-carrier screening in single-layer graphene,” Phys. Rev. Lett., vol. 110, no. 14, p. 146802, 2013.
[51] A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys., vol. 3, no. 1, pp. 36–40, 2007.
[52] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic structure of bilayer graphene,” Science, vol. 313, no. 5789, pp. 951–954, 2006.
[53] A. Luican, G. Li, A. Reina, J. Kong, R. Nair, K. S. Novoselov, A. K. Geim, and E. Andrei,“Single-layer behavior and its breakdown in twisted graphene layers,” Phys. Rev.
Lett., vol. 106, no. 12, p. 126802, 2011.
[54] G. Li, A. Luican, J. L. Dos Santos, A. C. Neto, A. Reina, J. Kong, and E. Andrei,“Observation of van hove singularities in twisted graphene layers,” Nat. Phys., vol. 6, no. 2, pp. 109–113, 2010.
[55] V. Cherkez, G. T. de Laissardiere, P. Mallet, and J.-Y. Veuillen, “Van hove singularities in doped twisted graphene bilayers studied by scanning tunneling spectroscopy,” Phys.
Rev. B, vol. 91, no. 15, p. 155428, 2015.
[56] P. Lauffer, K. Emtsev, R. Graupner, T. Seyller, L. Ley, S. Reshanov, and H. Weber,“Atomic and electronic structure of few-layer graphene on SiC (0001) studied with scanning tunneling microscopy and spectroscopy,” Phys. Rev. B, vol. 77, no. 15, p. 155426, 2008.
[57] M. Yankowitz, F. Wang, C. N. Lau, and B. J. LeRoy, “Local spectroscopy of the electrically tunable band gap in trilayer graphene,” Phys. Rev. B, vol. 87, no. 16, p.
165102, 2013.
[58] Y. Que, W. Xiao, H. Chen, D. Wang, S. Du, and H.-J. Gao, “Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru (0001),” Appl. Phys.
Lett., vol. 107, no. 26, p. 263101, 2015.
[59] D. Pierucci, H. Sediri, M. Hajlaoui, J.-C. Girard, T. Brumme, M. Calandra, E. Velez-Fort, G. Patriarche, M. G. Silly, G. Ferro et al., “Evidence for flat bands near the fermi level in epitaxial rhombohedral multilayer graphene,” ACS Nano, vol. 9, no. 5, pp. 5432–5439, 2015.
[60] J. S. Alden, A. W. Tsen, P. Y. Huang, R. Hovden, L. Brown, J. Park, D. A. Muller, and P. L. McEuen, “Strain solitons and topological defects in bilayer graphene,” Proc. Natl. Acad. Sci., vol. 110, no. 28, pp. 11 256–11 260, 2013.
[61] X. Feng, S. Kwon, J. Y. Park, and M. Salmeron, “Superlubric sliding of graphene nanoflakes on graphene,” ACS Nano, vol. 7, no. 2, pp. 1718–1724, 2013.
[62] Y. K. Huang, S. C. Chen, Y. H. Ho, C. Y. Lin, and M. F. Lin, “Feature-rich magnetic quantization in sliding bilayer graphenes,” Sci. Rep., vol. 4, p. 7509, 2014.
[63] S. C. Chen, C.W. Chiu, C. L.Wu, and M. F. Lin, “Shift-enriched optical properties in bilayer graphene,” RSC Adv., vol. 4, no. 109, pp. 63 779–63 783, 2014.
[64] M. Koshino, “Electronic transmission through AB-BA domain boundary in bilayer graphene,” Phys. Rev. B, vol. 88, no. 11, p. 115409, 2013.
[65] S. M. Choi, S. H. Jhi, and Y. W. Son, “Anomalous optical phonon splittings in sliding bilayer graphene,” ACS Nano, vol. 7, no. 8, pp. 7151–7156, 2013.
[66] C. L. Lu, C. P. Chang, Y. C. Huang, J. H. Ho, C. C. Hwang, and M. F. Lin, “Electronic properties of AA-and ABC-stacked few-layer graphites,” J. Phys. Soc. Jpn., vol. 76, no. 2, p. 024701, 2007.
[67] Y. H. Lai, J. H. Ho, C. P. Chang, and M. F. Lin, “Magnetoelectronic properties of bilayer bernal graphene,” Phys. Rev. B, vol. 77, no. 8, p. 085426, 2008.
[68] B. C. Brodie, “On the atomic weight of graphite,” Philos. Trans. R. Soc. London, vol. 149, pp. 249–259, 1859.
[69] L. Staudenmaier, “Verfahren zur darstellung der graphits¨aure,” Ber. Dtsch. Chem. Ges., vol. 31, no. 2, pp. 1481–1487, 1898.
[70] W. S. Hummers Jr and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc., vol. 80, no. 6, pp. 1339–1339, 1958.
[71] L. Tang, X. Li, R. Ji, K. S. Teng, G. Tai, J. Ye, C. Wei, and S. P. Lau, “Bottom-up synthesis of large-scale graphene oxide nanosheets,” J. Mater. Chem., vol. 22, no. 12, pp. 5676–5683, 2012.
[72] N. T. T. Tran, S. Y. Lin, O. E. Glukhova, and M. F. Lin, “ -bonding-dominated energy gaps in graphene oxide,” RSC Adv., vol. 6, no. 29, pp. 24 458–24 463, 2016.
[73] K. Y. Lian, Y. F. Ji, X. F. Li, M. X. Jin, D. J. Ding, and Y. Luo, “Big bandgap in highly reduced graphene oxides,” J. Phys. Chem. C, vol. 117, no. 12, pp. 6049–6054, 2013.
[74] J. Ito, J. Nakamura, and A. Natori, “Semiconducting nature of the oxygen-adsorbed graphene sheet,” J. Appl. Phys., vol. 103, no. 11, p. 113712, 2008.
[75] K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,”
Nano Lett., vol. 9, no. 3, pp. 1058–1063, 2009.
[76] K. Schulte, N. Vinogradov, M. L. Ng, N.M°artensson, and A. Preobrajenski, “Bandgap formation in graphene on Ir (111) through oxidation,” Appl. Surf. Sci., vol. 267, pp. 74–76, 2013.
[77] D. Pandey, R. Reifenberger, and R. Piner, “Scanning probe microscopy study of exfoliated oxidized graphene sheets,” Surf. Sci., vol. 602, no. 9, pp. 1607–1613, 2008.
[78] J. O. Sofo, A. S. Chaudhari, and G. D. Barber, “Graphane: a two-dimensional hydrocarbon,”Phys. Rev. B, vol. 75, no. 15, p. 153401, 2007.
[79] P. Chandrachud, B. S. Pujari, S. Haldar, B. Sanyal, and D. Kanhere, “A systematic study of electronic structure from graphene to graphane,” J. Phys. Condens. Matter, vol. 22, no. 46, p. 465502, 2010.
[80] M. Yang, A. Nurbawono, C. Zhang, Y. P. Feng et al., “Two-dimensional graphene superlattice made with partial hydrogenation,” Appl. Phys. Lett., vol. 96, no. 19, p.
193115, 2010.
[81] H. Gao, L. Wang, J. Zhao, F. Ding, and J. Lu, “Band gap tuning of hydrogenated graphene: H coverage and configuration dependence,” J. Phys. Chem. C, vol. 115,
no. 8, pp. 3236–3242, 2011.
[82] H. C. Huang, S. Y. Lin, C. L. Wu, and M. F. Lin, “Configuration-and concentration-dependent electronic properties of hydrogenated graphene,” Carbon, vol. 103, pp. 84–93, 2016.
[83] D. C. Elias, R. R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. Ferrari, D. Boukhvalov, M. Katsnelson, A. Geim et al., “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science, vol. 323, no. 5914, pp. 610–613, 2009.
[84] M. Jaiswal, C. H. Yi Xuan Lim, Q. Bao, C. T. Toh, K. P. Loh, and B. Ozyilmaz,“Controlled hydrogenation of graphene sheets and nanoribbons,” ACS Nano, vol. 5,
no. 2, pp. 888–896, 2011.
[85] J. Jones, K. Mahajan, W. Williams, P. Ecton, Y. Mo, and J. Perez, “Formation of graphane and partially hydrogenated graphene by electron irradiation of adsorbates on graphene,” Carbon, vol. 48, no. 8, pp. 2335–2340, 2010.
[86] Y. Wang, X. Xu, J. Lu, M. Lin, Q. Bao, B. Ozyilmaz, and K. P. Loh, “Toward high throughput interconvertible graphane-to-graphene growth and patterning,” ACS Nano,
vol. 4, no. 10, pp. 6146–6152, 2010.
[87] R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit et al., “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater., vol. 9, no. 4, pp. 315–319, 2010.
[88] R. Grassi, T. Low, and M. Lundstrom, “Scaling of the energy gap in pattern-hydrogenated graphene,” Nano Lett., vol. 11, no. 11, pp. 4574–4578, 2011.
[89] N. P. Guisinger, G. M. Rutter, J. N. Crain, P. N. First, and J. A. Stroscio, “Exposure of epitaxial graphene on SiC (0001) to atomic hydrogen,” Nano Lett., vol. 9, no. 4, pp. 1462–1466, 2009.
[90] A. Castellanos-Gomez, M. Wojtaszek, N. Tombros, and B. J. van Wees, “Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by
scanning tunneling spectroscopy,” Small, vol. 8, no. 10, pp. 1607–1613, 2012.
[91] R. Balog, B. Jørgensen, J. Wells, E. Lægsgaard, P. Hofmann, F. Besenbacher, and L. Hornekær, “Atomic hydrogen adsorbate structures on graphene,” J. Am. Chem.
Soc., vol. 131, no. 25, pp. 8744–8745, 2009.
[92] D. Boukhvalov, M. Katsnelson, and A. Lichtenstein, “Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations,” Phys. Rev. B, vol. 77, no. 3, p. 035427, 2008.
[93] T. Hussain, T. A. Maark, A. De Sarkar, and R. Ahuja, “Polylithiated (oli2) functionalized graphane as a potential hydrogen storage material,” Appl. Phys. Lett., vol. 101, no. 24, p. 243902, 2012.
[94] T. Hussain, A. De Sarkar, and R. Ahuja, “Strain induced lithium functionalized graphane as a high capacity hydrogen storage material,” Appl. Phys. Lett., vol. 101, no. 10, p. 103907, 2012.
[95] Y. S. Nechaev, “The high-density hydrogen carrier intercalation in graphane-like nanostructures, relevance to its on-board storage in fuel-cell-powered vehicles,” The Open Fuel Cells ., vol. 4, no. 16, pp. 10–2174, 2011.
[96] S.-H. Cheng, K. Zou, F. Okino, H. R. Gutierrez, A. Gupta, N. Shen, P. Eklund, J. Sofo, and J. Zhu, “Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor,” Phys. Rev. B, vol. 81, no. 20, p. 205435, 2010.
[97] V. Maz´anek, O. Jankovsk`y, J. Luxa, D. Sedmidubsk`y, Z. Janouˇsek, F. ˇSembera, M. Mikulics, and Z. Sofer, “Tuning of fluorine content in graphene: towards large-scale production of stoichiometric fluorographene,” Nanoscale, vol. 7, no. 32, pp. 13646–13655, 2015.
[98] B.Wang, J.Wang, and J. Zhu, “Fluorination of graphene: A spectroscopic and microscopic study,” ACS Nano, vol. 8, no. 2, pp. 1862–1870, 2014.
[99] S. D. Sherpa, J. Kunc, Y. Hu, G. Levitin, W. A. De Heer, C. Berger, and D. W. Hess,“Local work function measurements of plasma-fluorinated epitaxial graphene,” Appl. Phys. Lett., vol. 104, no. 8, p. 081607, 2014.
[100] P. Gong, Z. Wang, Z. Li, Y. Mi, J. Sun, L. Niu, H. Wang, J. Wang, and S. Yang,“Photochemical synthesis of fluorinated graphene via a simultaneous fluorination and
reduction route,” RSC Adv., vol. 3, no. 18, pp. 6327–6330, 2013.
[101] W. H. Lee, J. W. Suk, H. Chou, J. Lee, Y. Hao, Y. Wu, R. Piner, D. Akinwande, K. S. Kim, and R. S. Ruoff, “Selective-area fluorination of graphene with fluoropolymer and laser irradiation,” Nano Lett., vol. 12, no. 5, pp. 2374–2378, 2012.
[102] K. Samanta, S. Some, Y. Kim, Y. Yoon, M. Min, S. M. Lee, Y. Park, and H. Lee, “Highly hydrophilic and insulating fluorinated reduced graphene oxide,” Chem. Commun., vol. 49, no. 79, pp. 8991–8993, 2013.
[103] Z. Wang, J. Wang, Z. Li, P. Gong, X. Liu, L. Zhang, J. Ren, H. Wang, and S. Yang, “Synthesis of fluorinated graphene with tunable degree of fluorination,” Carbon,
vol. 50, no. 15, pp. 5403–5410, 2012.
[104] R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan et al., “Fluorographene: A two-dimensional counterpart of teflon,” Small, vol. 6, no. 24, pp. 2877–2884, 2010.
[105] K.-J. Jeon, Z. Lee, E. Pollak, L. Moreschini, A. Bostwick, C.-M. Park, R. Mendelsberg,
V. Radmilovic, R. Kostecki, T. J. Richardson et al., “Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence,” ACS Nano, vol. 5, no. 2, pp.
1042–1046, 2011.
[106] P. V. Medeiros, A. J. Mascarenhas, F. de Brito Mota, and C. M. C. de Castilho, “A dft study of halogen atoms adsorbed on graphene layers,” Nanotech., vol. 21, no. 48, p. 485701, 2010.
[107] H. Sahin and S. Ciraci, “Chlorine adsorption on graphene: Chlorographene,” J. Phys. Chem. C, vol. 116, no. 45, pp. 24 075–24 083, 2012.
[108] A. L. Walter, K.-J. Jeon, A. Bostwick, F. Speck, M. Ostler, T. Seyller, L. Moreschini, Y. S. Kim, Y. J. Chang, K. Horn et al., “Highly p-doped epitaxial graphene obtained by fluorine intercalation,” Appl. Phys. Lett., vol. 98, no. 18, p. 184102, 2011.
[109] C. Sun, Y. Feng, Y. Li, C. Qin, Q. Zhang, and W. Feng, “Solvothermally exfoliated fluorographene for high-performance lithium primary batteries,” Nanoscale, vol. 6, no. 5, pp. 2634–2641, 2014.
[110] F.-G. Zhao, G. Zhao, X.-H. Liu, C.-W. Ge, J.-T. Wang, B.-L. Li, Q.-G. Wang, W.-S. Li, and Q.-Y. Chen, “Fluorinated graphene: facile solution preparation and tailorable properties by fluorine-content tuning,” J. Mater. Chem. A, vol. 2, no. 23, pp. 8782–8789, 2014.
[111] Y. Wang, W. C. Lee, K. K. Manga, P. K. Ang, J. Lu, Y. P. Liu, C. T. Lim, and K. P. Loh, “Fluorinated graphene for promoting neuro-induction of stem cells,” Adv. Mater., vol. 24, no. 31, pp. 4285–4290, 2012.
[112] N. Nebogatikova, I. Antonova, I. Kurkina, R. Soots, V. Vdovin, V. Timofeev, S. Smagulova, and V. Y. Prinz, “Fluorinated graphene suspension for inkjet printed technologies," Nanotechnolgy, vol. 27, no. 20, p. 205601, 2016.
[113] M. Katkov, V. Sysoev, A. Gusel’Nikov, I. Asanov, L. Bulusheva, and A. Okotrub, “A backside fluorine-functionalized graphene layer for ammonia detection,” Phys. Chem. Chem. Phys., vol. 17, no. 1, pp. 444–450, 2015.
[114] V. Urbanov´a, F. Karlick`y, A. Matˇej, F. ˇSembera, Z. Janouˇsek, J. A. Perman, V. Ranc, K. ˇC ´epe, J. Michl, M. Otyepka et al., “Fluorinated graphenes as advanced biosensors–effect of fluorine coverage on electron transfer properties and adsorption
of biomolecules,” Nanoscale, 2016.
[115] B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, and Z. Liu, “Photochemical chlorination of graphene,” ACS Nano, vol. 5, no. 7, pp. 5957–5961, 2011.
[116] J. Wu, L. Xie, Y. Li, H. Wang, Y. Ouyang, J. Guo, and H. Dai, “Controlled chlorine plasma reaction for noninvasive graphene doping,” J. Am. Chem. Soc., vol. 133, no. 49, pp. 19 668–19 671, 2011.
[117] O. Jankovsk`y, P. ˇSimek, K. Klimova, D. Sedmidubsk`y, S. Matˇejkov´a, M. Pumera, and Z. Sofer, “Towards graphene bromide: bromination of graphite oxide,” Nanoscale, vol. 6, no. 11, pp. 6065–6074, 2014.
[118] Z. Yao, H. Nie, Z. Yang, X. Zhou, Z. Liu, and S. Huang, “Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium,” Chem. Commun., vol. 48, no. 7, pp. 1027–1029, 2012.
[119] G. Kresse and J. Furthm¨uller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, no. 16, p. 11169, 1996.
[120] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B, vol. 59, no. 3, p. 1758, 1999.
[121] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made
simple,” Phys. Rev. Lett., vol. 77, no. 18, p. 3865, 1996.
[122] P. E. Bl¨ochl, “Projector augmented-wave method,” Phys. Rev. B, vol. 50, no. 24, p. 17953, 1994.
[123] S. Grimme, “Semiempirical gga-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem., vol. 27, no. 15, pp. 1787–1799, 2006.
[124] M. Yankowitz, I. Joel, J. Wang, A. G. Birdwell, Y.-A. Chen, K. Watanabe, T. Taniguchi, P. Jacquod, P. San-Jose, P. Jarillo-Herrero et al., “Electric field control
of soliton motion and stacking in trilayer graphene,” Nature Mater., vol. 13, no. 8, pp. 786–789, 2014.
[125] M. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Adv. Phys., vol. 30, no. 2, pp. 139–326, 1981.
[126] H. J. Park, J. Meyer, S. Roth, and V. Sk´akalov´a, “Growth and properties of few-layer graphene prepared by chemical vapor deposition,” Carbon, vol. 48, no. 4, pp. 1088–1094, 2010.
[127] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong,“Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,”Nano Lett., vol. 9, no. 1, pp. 30–35, 2008.
[128] S. J. Chae, F. Gune, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. J. Shin, S. M. Yoon, J. Y. Choi, M. H. Park et al., “Synthesis of large-area graphene layers
on poly-nickel substrate by chemical vapor deposition: wrinkle formation,” Adv. Mater., vol. 21, no. 22, pp. 2328–2333, 2009.
[129] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007.
[130] C. Rao, K. Subrahmanyam, H. R. Matte, B. Abdulhakeem, A. Govindaraj, B. Das, P. Kumar, A. Ghosh, and D. J. Late, “A study of the synthetic methods and properties of graphenes,” Sci. Technol. Adv. Mater., 2016.
[131] B. Qin, T. Zhang, H. Chen, and Y. Ma, “The growth mechanism of few-layer graphene in the arc discharge process,” Carbon, vol. 102, pp. 494–498, 2016.
[132] Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, and Y. Chen, “Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films,” Nano Research, vol. 3, no. 9, pp. 661–669, 2010.
[133] P. Mahanandia, F. Simon, G. Heinrich, and K. K. Nanda, “An electrochemical method for the synthesis of few layer graphene sheets for high temperature applications," Chem. Commun., vol. 50, no. 35, pp. 4613–4615, 2014.
[134] Z. Li, H. Zhu, D. Xie, K. Wang, A. Cao, J. Wei, X. Li, L. Fan, and D. Wu, “Flame synthesis of few-layered graphene/graphite films,” Chem. Commun., vol. 47, no. 12, pp. 3520–3522, 2011.
[135] C. Y. Lin, J. Y. Wu, Y. J. Ou, Y. H. Chiu, and M. F. Lin, “Magneto-electronic properties of multilayer graphenes,” Phys. Chem. Chem. Phys., vol. 17, no. 39, pp. 26 008–26 035, 2015.
[136] C. H. Ho, C. P. Chang, and M. F. Lin, “Evolution and dimensional crossover from the bulk subbands in ABC-stacked graphene to a three-dimensional dirac cone structure in rhombohedral graphite,” Phys. Rev. B, vol. 93, no. 7, p. 075437, 2016.
[137] T. Khodkov, I. Khrapach, M. F. Craciun, and S. Russo, “Direct observation of a gate tunable band gap in electrical transport in ABC-trilayer graphene,” Nano Lett., vol. 15, no. 7, pp. 4429–4433, 2015.
[138] N. Ooi, A. Rairkar, and J. B. Adams, “Density functional study of graphite bulk and surface properties,” Carbon, vol. 44, no. 2, pp. 231–242, 2006.
[139] M. F. Lin and F. L. Shyu, “Optical properties of nanographite ribbons,” J. Phys. Soc. Jpn, vol. 69, no. 11, pp. 3529–3532, 2000.
[140] M. F. Lin, F. L. Shyu, and R. B. Chen, “Optical properties of well-aligned multiwalled carbon nanotube bundles,” Phys. Rev. B, vol. 61, no. 20, p. 14114, 2000.
[141] M. F. Lin and K.W. K. Shung, “Plasmons and optical properties of carbon nanotubes,”Phys. Rev. B, vol. 50, no. 23, p. 17744, 1994.
[142] P. Bolognesi, L. Avaldi, A. Ruocco, A. Verkhovtsev, A. Korol, and A. Solov’yov,“Collective excitations in the electron energy loss spectra of c60,” Eur. Phys. J. D, vol. 66, no. 10, pp. 1–9, 2012.
[143] Y. P. Lin, C. Y. Lin, Y. H. Ho, T. N. Do, and M. F. Lin, “Magneto-optical properties of ABC-stacked trilayer graphene,” Phys. Chem. Chem. Phys., vol. 17, no. 24, pp.
15 921–15 927, 2015.
[144] T. N. Do, C. Y. Lin, Y. P. Lin, P. H. Shih, and M. F. Lin, “Configuration-enriched magneto-electronic spectra of AAB-stacked trilayer graphene,” Carbon, vol. 94, pp. 619–632, 2015.
[145] P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Mullen, C. A. Pignedoli et al., “Electronic structure of atomically precise graphene nanoribbons,” ACS Nano, vol. 6, no. 8, pp. 6930–6935, 2012.
[146] K. Sugawara, T. Sato, S. Souma, T. Takahashi, and H. Suematsu, “Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy,” Phys. Rev. B, vol. 73, no. 4, p. 045124, 2006.
[147] A. Gr¨uneis, C. Attaccalite, T. Pichler, V. Zabolotnyy, H. Shiozawa, S. Molodtsov, D. Inosov, A. Koitzsch, M. Knupfer, J. Schiessling et al., “Electron-electron correlation in graphite: a combined angle-resolved photoemission and first-principles study,”
Phys. Rev. Lett., vol. 100, no. 3, p. 037601, 2008.
[148] K. S. Kim, A. L. Walter, L. Moreschini, T. Seyller, K. Horn, E. Rotenberg, and A. Bostwick, “Coexisting massive and massless dirac fermions in symmetry-broken
bilayer graphene,” Nat. Mater., vol. 12, no. 10, pp. 887–892, 2013.
[149] P. Sutter, M. S. Hybertsen, J. T. Sadowski, and E. Sutter, “Electronic structure of few-layer epitaxial graphene on ru (0001),” Nano Lett., vol. 9, no. 7, pp. 2654–2660, 2009.
[150] S. Y. Zhou, D. A. Siegel, A. V. Fedorov, and A. Lanzara, “Metal to insulator transition in epitaxial graphene induced by molecular doping,” Phys. Rev. Lett., vol. 101, no. 8, p. 086402, 2008.
[151] A. Gr¨uneis and D. V. Vyalikh, “Tunable hybridization between electronic states of graphene and a metal surface,” Phys. Rev. B, vol. 77, no. 19, p. 193401, 2008.
[152] M. Papagno, S. Rusponi, P. M. Sheverdyaeva, S. Vlaic, M. Etzkorn, D. Pacil´e, P. Moras, C. Carbone, and H. Brune, “Large band gap opening between graphene dirac cones induced by na adsorption onto an ir superlattice,” ACS Nano, vol. 6, no. 1, pp. 199–204, 2011.
[153] F. Mazzola, J. W. Wells, R. Yakimova, S. Ulstrup, J. A. Miwa, R. Balog, M. Bianchi, M. Leandersson, J. Adell, P. Hofmann et al., “Kinks in the band of graphene induced by electron-phonon coupling,” Phys. Rev. Lett., vol. 111, no. 21, p. 216806, 2013.
[154] S. W. Jung, W. J. Shin, J. Kim, L. Moreschini, H. W. Yeom, E. Rotenberg, A. Bostwick, and K. S. Kim, “Sublattice interference as the origin of band kinks in graphene,” Phys. Rev. Lett., vol. 116, no. 18, p. 186802, 2016.
[155] H. Huang, D. Wei, J. Sun, S. L. Wong, Y. P. Feng, A. H. C. Neto, and A. T. S. Wee, “Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons,” Sci. Rep., vol. 2, 2012.
[156] H. S¨ode, L. Talirz, O. Gr¨oning, C. A. Pignedoli, R. Berger, X. Feng, K. M¨ullen, R. Fasel, and P. Ruffieux, “Electronic band dispersion of graphene nanoribbons via fourier-transformed scanning tunneling spectroscopy,” Phys. Rev. B, vol. 91, no. 4, p. 045429, 2015.
[157] Y. C. Chen, D. G. De Oteyza, Z. Pedramrazi, C. Chen, F. R. Fischer, and M. F. Crommie,“Tuning the band gap of graphene nanoribbons synthesized from molecular precursors,”ACS Nano, vol. 7, no. 7, pp. 6123–6128, 2013.
[158] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes,” Nature, vol. 391, no. 6662, pp. 59–62, 1998.
[159] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes,” Nature, vol. 391, no. 6662, pp. 62–64, 1998.
[160] Z. Klusek, “Investigations of splitting of the bands in graphite by scanning tunneling spectroscopy,” Appl. Surf. Sci., vol. 151, no. 3, pp. 251–261, 1999.
[161] G. Li, A. Luican, and E. Y. Andrei, “Scanning tunneling spectroscopy of graphene on graphite,” Phys. Rev. Lett., vol. 102, no. 17, p. 176804, 2009.
[162] H. H. Chen, S. H. Su, S. L. Chang, B. Y. Cheng, C. W. Chong, J. C. A. Huang, and M. F. Lin, “Long-range interactions of bismuth growth on monolayer epitaxial
graphene at room temperature,” Carbon, vol. 93, pp. 180–186, 2015.
[163] H. H. Chen, S. H. Su, S. L. Chang, B. Y. Cheng, S. W. Chen, H. Y. Chen, M. F. Lin, and J. C. A. Huang, “Tailoring low-dimensional structures of bismuth on monolayer epitaxial graphene,” Sci. Rep., vol. 5, 2015.
[164] M. Gyamfi, T. Eelbo, M. Wa´sniowska, and R. Wiesendanger, “Fe adatoms on graphene/ru (0001): Adsorption site and local electronic properties,” Phys. Rev. B, vol. 84, no. 11, p. 113403, 2011.
[165] J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang, and M. F. Lin, “Coulomb excitations in AA-and AB-stacked bilayer graphites,” Phys. Rev. B, vol. 74, no. 8, p. 085406, 2006.
[166] P. L. De Andres, R. Ram´ırez, and J. A. Verg´es, “Strong covalent bonding between two graphene layers,” Phys. Rev. B, vol. 77, no. 4, p. 045403, 2008.
[167] Z. Liu, J. Yang, F. Grey, J. Z. Liu, Y. Liu, Y. Wang, Y. Yang, Y. Cheng, and Q. Zheng, “Observation of microscale superlubricity in graphite,” Phys. Rev. Lett., vol. 108, no. 20, p. 205503, 2012.
[168] P. Xu, M. L. Ackerman, S. D. Barber, J. K. Schoelz, D. Qi, P. M. Thibado, V. D. Wheeler, L. O. Nyakiti, R. L. Myers-Ward, C. R. Eddy Jr et al., “Graphene manipulation on 4H-SiC (0001) using scanning tunneling microscopy,” Jpn. J. Appl. Phys., vol. 52, no. 3R, p. 035104, 2013.
[169] S. Bhattacharyya and A. K. Singh, “Lifshitz transition and modulation of electronic and transport properties of bilayer graphene by sliding and applied normal compressive strain,” Carbon, vol. 99, pp. 432–438, 2016.
[170] V. W. Brar, R. Decker, H.-M. Solowan, Y. Wang, L. Maserati, K. T. Chan, H. Lee, C¸ . O. Girit, A. Zettl, S. G. Louie et al., “Gate-controlled ionization and screening of cobalt adatoms on a graphene surface,” Nat. Phys., vol. 7, no. 1, pp. 43–47, 2011.
[171] I. Zanella, S. B. Fagan, R. Mota, and A. Fazzio, “Electronic and magnetic properties of ti and fe on graphene,” J. Phys. Chem. C, vol. 112, no. 25, pp. 9163–9167, 2008.
[172] P. Karthika, N. Rajalakshmi, and K. Dhathathreyan, “Phosphorus-doped exfoliated graphene for supercapacitor electrodes,” J. Nanosci. Nanotechnol, vol. 13, no. 3, pp. 1746–1751, 2013.
[173] C. H. Q. J. D. L. M. Xue Y H, Zhu L, “Multiscale patterning of graphene oxide and reduced graphene oxide for flexible supercapacitors,” Carbon, vol. 92, pp. 305–310, 2015.
[174] Y. Chen, X. Zhang, D. Zhang, P. Yu, and Y. Ma, “High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes,” Carbon, vol. 49, no. 2, pp. 573–580, 2011.
[175] W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B.Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol., vol. 6, no. 8, pp. 496–500, 2011.
[176] K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem., vol. 2, no. 12, pp. 1015–1024, 2010.
[177] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,”
ACS Nano, vol. 4, no. 1, pp. 43–48, 2009.
[178] Q. Su, S. Pang, V. Alijani, C. Li, X. Feng, and K. M¨ullen, “Composites of graphene with large aromatic molecules,” Adv. Mater., vol. 21, no. 31, pp. 3191–3195, 2009.
[179] S. Porro, E. Accornero, C. F. Pirri, and C. Ricciardi, “Memristive devices based on graphene oxide,” Carbon, vol. 85, pp. 383–396, 2015.
[180] Z. L. Wang, D. Xu, H. G. Wang, Z. Wu, and X. B. Zhang, “In situ fabrication of porous graphene electrodes for high-performance energy storage,” ACS Nano, vol. 7, no. 3, pp. 2422–2430, 2013.
[181] Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, and X. H. Xia, “Electrochemical sensor based on nitrogen doped graphene: simultaneous determination
of ascorbic acid, dopamine and uric acid,” Biosens. Bioelectron, vol. 34, no. 1, pp. 125–131, 2012.
[182] M. Veerapandian, M. H. Lee, K. Krishnamoorthy, and K. Yun, “Synthesis, characterization and electrochemical properties of functionalized graphene oxide,” Carbon,
vol. 50, no. 11, pp. 4228–4238, 2012.
[183] J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett., vol. 8, no. 10, pp. 3137–3140, 2008.
[184] A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen
plasma-treated graphene,” Nanotechnology, vol. 21, no. 43, p. 435203, 2010.
[185] H. C. Huang, S. Y. Lin, C. L. Wu, and M. F. Lin, “Configuration-and concentration-dependent electronic properties of hydrogenated graphene,” Carbon, vol. 103, pp. 84–93, 2016.
[186] M. S. Azadeh, A. Kokabi, M. Hosseini, and M. Fardmanesh, “Tunable bandgap opening
in the proposed structure of silicon-doped graphene,” Micro Nano Lett., vol. 6, no. 8, pp. 582–585, 2011.
[187] S. Zhang, S. Lin, X. Li, X. Liu, H. Wu, W. Xu, P. Wang, Z. Wu, H. Zhong, and Z. Xu, “Opening the band gap of graphene through silicon doping for the improved
performance of graphene/gaas heterojunction solar cells,” Nanoscale, vol. 8, no. 1, pp. 226–232, 2016.
[188] P. A. Denis, “Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur,” Chem. Phys. Lett., vol. 492, no. 4, pp. 251–257, 2010.
[189] A. D. Pablo, “Concentration dependence of the band gaps of phosphorus and sulfur doped graphene,” Comp. Mater. Sci., vol. 67, pp. 203–206, 2013.
[190] P. P. Shinde and V. Kumar, “Direct band gap opening in graphene by bn doping: Ab initio calculations,” Phys. Rev. B, vol. 84, no. 12, p. 125401, 2011.
[191] C. Xu, P. A. Brown, J. Lu, and K. L. Shuford, “Electronic properties of halogen-adsorbed graphene,” J. Phys. Chem. C, vol. 119, no. 30, pp. 17 271–17 277, 2015.
[192] S. W. Chu, S. J. Baek, D. C. Kim, S. Seo, J. S. Kim, and Y. W. Park, “Charge transport in graphene doped with diatomic halogen molecules (i 2, br 2) near dirac point,”Synthetic Met., vol. 162, no. 17, pp. 1689–1693, 2012.
[193] C. G´omez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, “Electronic transport properties of individual chemically reduced
graphene oxide sheets,” Nano Lett., vol. 7, no. 11, pp. 3499–3503, 2007.
[194] V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nat. Nanotechnol., vol. 4, no. 1, pp. 25–29, 2009.
[195] G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol., vol. 3, no. 5, pp. 270–274, 2008.
[196] C. Schafhaeutl, “LXXXVI. on the combinations of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron,”Phil. Mag., vol. 16, no. 106, pp. 570–590, 1840.
[197] F. Li, X. Jiang, J. Zhao, and S. Zhang, “Graphene oxide: A promising nanomaterial for energy and environmental applications,” Nano Energy, vol. 16, pp. 488–515, 2015.
[198] H. L. Poh, F. ˇSanˇek, A. Ambrosi, G. Zhao, Z. Sofer, and M. Pumera, “Graphenes prepared by staudenmaier, hofmann and hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties,” Nanoscale, vol. 4, no. 11,
pp. 3515–3522, 2012.
[199] H. Bai, C. Li, and G. Shi, “Functional composite materials based on chemically converted graphene,” Adv. Mater., vol. 23, no. 9, pp. 1089–1115, 2011.
[200] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany,W. Lu, and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–4814, 2010.
[201] R. Wu, Y. Wang, L. Chen, L. Huang, and Y. Chen, “Control of the oxidation level of graphene oxide for high efficiency polymer solar cells,” RSC Adv., vol. 5, no. 61, pp. 49 182–49 187, 2015.
[202] K. Nakada and A. Ishii, “Migration of adatom adsorption on graphene using dft calculation,”Solid State Commun., vol. 151, no. 1, pp. 13–16, 2011.
[203] S. Saxena, T. A. Tyson, S. Shukla, E. Negusse, H. Chen, and J. Bai, “Investigation of structural and electronic properties of graphene oxide,” Appl. Phys. Lett., vol. 99, no. 1, p. 013104, 2011.
[204] K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, “Determination of the local chemical structure of graphene oxide and reduced graphene oxide,” Adv. Mater., vol. 22, no. 40, pp. 4467–4472, 2010.
[205] H. Huang, Z. Li, J. She, and W. Wang, “Oxygen density dependent band gap of reduced graphene oxide,” J. Appl. Phys., vol. 111, no. 5, p. 054317, 2012.
[206] W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller et al., “Synthesis and solid-state nmr structural characterization of 13c-labeled graphite oxide,” Science, vol. 321, no. 5897, pp. 1815–1817, 2008.
[207] C. Hontoria-Lucas, A. Lopez-Peinado, J. d. D. L´opez-Gonz´alez, M. Rojas-Cervantes, and R. Martin-Aranda, “Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization,” Carbon, vol. 33, no. 11, pp. 1585–
1592, 1995.
[208] W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, “New insights into the structure and reduction of graphite oxide,” Nat. Chem., vol. 1, no. 5, pp. 403–408, 2009.
[209] A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of graphite oxide revisited,”J. Phys. Chem. B, vol. 102, no. 23, pp. 4477–4482, 1998.
[210] L. B. Casabianca, M. A. Shaibat, W. W. Cai, S. Park, R. Piner, R. S. Ruoff, and Y. Ishii, “Nmr-based structural modeling of graphite oxide using multidimensional 13c solid-state nmr and ab initio chemical shift calculations,” J. Am. Chem. Soc., vol.
132, no. 16, pp. 5672–5676, 2010.
[211] X. Du, M. Xiao, Y. Meng, and A. Hay, “Novel synthesis of conductive poly (arylene disulfide)/graphite nanocomposite,” Synth. Metals, vol. 143, no. 1, pp. 129–132, 2004.
[212] T. Szab´o, A. Szeri, and I. D´ek´any, “Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer,” Carbon, vol. 43, no. 1, pp. 87–94, 2005.
[213] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,”Nature, vol. 442, no. 7100, pp. 282–286, 2006.
[214] A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, p. 109, 2009.
[215] D. W. Boukhvalov and M. I. Katsnelson, “Modeling of graphite oxide,” J. Am. Chem. Soc., vol. 130, no. 32, pp. 10 697–10 701, 2008.
[216] T. Ohta, F. El Gabaly, A. Bostwick, J. L. McChesney, K. V. Emtsev, A. K. Schmid, T. Seyller, K. Horn, and E. Rotenberg, “Morphology of graphene thin film growth on SiC (0001),” New J. Phys., vol. 10, no. 2, p. 023034, 2008.
[217] H. Liang, C. Smith, C. Mills, and S. Silva, “The band structure of graphene oxide examined using photoluminescence spectroscopy,” J. Mater. Chem. C, vol. 3, no. 48, pp. 12 484–12 491, 2015.
[218] K. Xu, C. Zeng, Q. Zhang, R. Yan, P. Ye, K. Wang, A. C. Seabaugh, H. G. Xing, J. S. Suehle, C. A. Richter et al., “Direct measurement of dirac point energy at the
graphene/oxide interface,” Nano Lett., vol. 13, no. 1, pp. 131–136, 2012.
[219] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano, vol. 2, no. 3, pp. 463–470, 2008.
[220] V. B. Mohan, R. Brown, K. Jayaraman, and D. Bhattacharyya, “Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity,”Mater. Sci. Eng. B, vol. 193, pp. 49–60, 2015.
[221] C.Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D.Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater., vol. 19, no. 16, pp. 2577–2583, 2009.
[222] I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, “Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures,” Nano Lett., vol. 8, no. 12, pp. 4283–4287, 2008.
[223] T. Q. Trung, N. T. Tien, D. Kim, M. Jang, O. J. Yoon, and N.-E. Lee, “A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing,” Adv. Funct. Mater., vol. 24, no. 1, pp. 117–124, 2014.
[224] T. K. Truong, T. Nguyen, T. Q. Trung, I. Y. Sohn, D. J. Kim, J. H. Jung, and N. E. Lee, “Reduced graphene oxide field-effect transistor with indium tin oxide extended gate for proton sensing,” Curr. Appl. Phys., vol. 14, no. 5, pp. 738–743, 2014.
[225] D. Joung, A. Chunder, L. Zhai, and S. I. Khondaker, “High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis,” Nanotech., vol. 21, no. 16, p. 165202, 2010.
[226] Q. He, H. G. Sudibya, Z. Yin, S.Wu, H. Li, F. Boey,W. Huang, P. Chen, and H. Zhang,“Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications,” ACS Nano, vol. 4, no. 6, pp. 3201–3208, 2010.
[227] G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater., vol. 22, no. 22, pp. 2392–2415, 2010.
[228] S. Basu and P. Bhattacharyya, “Recent developments on graphene and graphene oxide based solid state gas sensors,” Sensor. Actuat. B Chem., vol. 173, pp. 1–21, 2012.
[229] P. G. Su and C. F. Chiou, “Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate,” Sensor. Actuat. B Chem., vol. 200, pp. 9–18, 2014.
[230] Q. Zheng, Z. Li, J. Yang, and J. K. Kim, “Graphene oxide-based transparent conductive films,” Prog. in Mater. Sci., vol. 64, pp. 200–247, 2014.
[231] A. Nekahi, P. Marashi, and D. Haghshenas, “Transparent conductive thin film of ultra large reduced graphene oxide monolayers,” Appl. Surf. Sci., vol. 295, pp. 59–65, 2014.
[232] I. P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang et al., “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett., vol. 2, no. 24, pp. 3006–3012, 2011.
[233] Z. Yin, S. Sun, T. Salim, S.Wu, X. Huang, Q. He, Y. M. Lam, and H. Zhang, “Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes,” ACS Nano, vol. 4, no. 9, pp. 5263–5268, 2010.
[234] S. K. Saha, S. Bhaumik, T. Maji, T. K. Mandal, and A. J. Pal, “Solution-processed reduced graphene oxide in light-emitting diodes and photovoltaic devices with the
same pair of active materials,” RSC Adv., vol. 4, no. 67, pp. 35 493–35 499, 2014.
[235] Y. Lu, Y. Jiang, W. Wei, H. Wu, M. Liu, L. Niu, and W. Chen, “Novel blue lightemitting graphene oxide nanosheets fabricated by surface functionalization,” J. Mater. Chem., vol. 22, no. 7, pp. 2929–2934, 2012.
[236] B. Gharekhanlou, S. Tousaki, and S. Khorasani, “Bipolar transistor based on graphane,” vol. 248, no. 1. IOP Publishing, 2010, p. 012061.
[237] H.-Y. Lu, L. Hao, R.Wang, and C. Ting, “Ferromagnetism and superconductivity with possible p + ip pairing symmetry in partially hydrogenated graphene,” Phys. Rev. B, vol. 93.
[238] C. Zhou, S. Chen, J. Lou, J. Wang, Q. Yang, C. Liu, D. Huang, and T. Zhu,“Graphene’s cousin: the present and future of graphane,” Nanoscale Res. Lett., vol. 9,
no. 1, pp. 1–9, 2014.
[239] T. Hussain, P. Panigrahi, and R. Ahuja, “Enriching physisorption of h 2 s and nh 3 gases on a graphane sheet by doping with li adatoms,” Phys. Chem. Chem. Phys.,
vol. 16, no. 17, pp. 8100–8105, 2014.
[240] Y. S. Nechaev, “On the solid hydrogen carrier intercalation in graphane-like regions in carbon-based nanostructures,” Int. J. Hydrog. Energy, vol. 36, no. 15, pp. 9023–9031, 2011.
[241] J. Zhou, Q. Wang, Q. Sun, X. Chen, Y. Kawazoe, and P. Jena, “Ferromagnetism in
semihydrogenated graphene sheet,” Nano Lett., vol. 9, no. 11, pp. 3867–3870, 2009.
[242] D. Boukhvalov, “Stable antiferromagnetic graphone,” Physica E Low Dimens Syst Nanostruct., vol. 43, no. 1, pp. 199–201, 2010.
[243] D. Usachov, A. Fedorov, M. M. Otrokov, A. Chikina, O. Vilkov, A. Petukhov, A. G. Rybkin, Y. M. Koroteev, E. V. Chulkov, V. K. Adamchuk et al., “Observation of
single-spin dirac fermions at the graphene/ferromagnet interface,” Nano Lett., vol. 15, no. 4, pp. 2396–2401, 2015.
[244] I. Gierz, J. H. Dil, F. Meier, B. Slomski, J. Osterwalder, J. Henk, R.Winkler, C. R. Ast, and K. Kern, “Giant anisotropic spin splitting in epitaxial graphene,” arXiv preprint arXiv:1004.1573, 2010.
[245] C. T. Ellis, A. V. Stier, M. H. Kim, J. G. Tischler, E. R. Glaser, R. L. Myers Ward, J. L. Tedesco, C. R. Eddy, D. K. Gaskill, and J. Cerne, “Magneto-optical fingerprints of distinct graphene multilayers using the giant infrared kerr effect,” Sci. Rep., vol. 3, no. 3143.
[246] J. Y. Chen, J. Zhu, D. Zhang, D. M. Lattery, M. Li, J. P. Wang, and X. Wang, “Time-resolved magneto-optical kerr effect of magnetic thin films for ultrafast thermal characterization,”J. Phys. Chem. Lett., vol. 7, no. 13, p. 2328–2332, 2016.
[247] A. L. Friedman, O. M. van’t Erve, J. T. Robinson, K. E. Whitener Jr, and B. T. Jonker,“Hydrogenated graphene as a homoepitaxial tunnel barrier for spin and charge transport in graphene,” ACS Nano, vol. 9, no. 7, pp. 6747–6755, 2015.
[248] W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, “Graphene spintronics,” Nat. Nanotechnol., vol. 9, no. 10, pp. 794–807, 2014.
[249] D. Serrate, P. Ferriani, Y. Yoshida, S.-W. Hla, M. Menzel, K. Von Bergmann, S. Heinze, A. Kubetzka, and R. Wiesendanger, “Imaging and manipulating the spin
direction of individual atoms,” Nat. Nanotechnol., vol. 5, no. 5, pp. 350–353, 2010.
[250] W. Wulfhekel and J. Kirschner, “Spin-polarized scanning tunneling microscopy of magnetic structures and antiferromagnetic thin films,” Mater. Res., vol. 37, no. 1, p. 69, 2007.
[251] M. Corbetta, S. Ouazi, J. Borme, Y. Nahas, F. Donati, H. Oka, S.Wedekind, D. Sander, and J. Kirschner, “Magnetic response and spin polarization of bulk cr tips for in-field spin-polarized scanning tunneling microscopy,” Jpn. J. Appl. Phys., vol. 51, no. 3R,
p. 030208, 2012.
[252] L. Berbil-Bautista, S. Krause, M. Bode, and R. Wiesendanger, “Spin-polarized scanning tunneling microscopy and spectroscopy of ferromagnetic Dy (0001)/W (110) films,” Phys. Rev. B, vol. 76, no. 6, p. 064411, 2007.
[253] X.-D.Wen, L. Hand, V. Labet, T. Yang, R. Hoffmann, N. Ashcroft, A. R. Oganov, and A. O. Lyakhov, “Graphane sheets and crystals under pressure,” Proc. Natl. Acad. Sci., vol. 108, no. 17, pp. 6833–6837, 2011.
[254] D. K. Samarakoon and X.-Q. Wang, “Chair and twist-boat membranes in hydrogenated graphene,” ACS Nano, vol. 3, no. 12, pp. 4017–4022, 2009.
[255] D. Yi, L. Yang, S. Xie, and A. Saxena, “Stability of hydrogenated graphene: a first-principles study,” RSC Adv., vol. 5, no. 26, pp. 20 617–20 622, 2015.
[256] A. Y. S. Eng, Z. Sofer, P. ˇSimek, J. Kosina, and M. Pumera, “Highly hydrogenated graphene through microwave exfoliation of graphite oxide in hydrogen plasma: towards electrochemical applications,” Chem. Eur. J., vol. 19, no. 46, pp. 15 583–15 592, 2013.
[257] Z. Luo, T. Yu, K.-j. Kim, Z. Ni, Y. You, S. Lim, Z. Shen, S. Wang, and J. Lin,“Thickness-dependent reversible hydrogenation of graphene layers,” ACS Nano,
vol. 3, no. 7, pp. 1781–1788, 2009.
[258] M. Wojtaszek, N. Tombros, A. Caretta, P. Van Loosdrecht, and B. Van Wees, “A road to hydrogenating graphene by a reactive ion etching plasma,” J. Appl. Phys., vol. 110, no. 6, p. 063715, 2011.
[259] I.-S. Byun, D. Yoon, J. S. Choi, I. Hwang, D. H. Lee, M. J. Lee, T. Kawai, Y.-W. Son, Q. Jia, H. Cheong et al., “Nanoscale lithography on monolayer graphene using
hydrogenation and oxidation,” ACS Nano, vol. 5, no. 8, pp. 6417–6424, 2011.
[260] M. Pumera and C. H. A. Wong, “Graphane and hydrogenated graphene,” Chem. Soc. Rev., vol. 42, no. 14, pp. 5987–5995, 2013.
[261] L. Y. Antipina, P. V. Avramov, S. Sakai, H. Naramoto, M. Ohtomo, S. Entani, Y. Matsumoto, and P. B. Sorokin, “High hydrogen-adsorption-rate material based on graphane decorated with alkali metals,” Phys. Rev. B, vol. 86, no. 8, p. 085435, 2012.
[262] Y. Zhou, Z. Wang, P. Yang, X. Sun, X. Zu, and F. Gao, “Hydrogenated graphene nanoflakes: semiconductor to half-metal transition and remarkable large magnetism,”
J. Phys. Chem. C, vol. 116, no. 9, pp. 5531–5537, 2012.
[263] T. H. Seah, H. L. Poh, C. K. Chua, Z. Sofer, and M. Pumera, “Towards graphane applications in security: the electrochemical detection of trinitrotoluene in seawater
on hydrogenated graphene,” Electroanalysis, vol. 26, no. 1, pp. 62–68, 2014.
[264] J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan et al., “Properties of fluorinated graphene films,” Nano Lett., vol. 10, no. 8, pp. 3001–3005, 2010.
[265] H. Liu, Z. Hou, C. Hu, Y. Yang, and Z. Zhu, “Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine,” J. Phys. Chem. C, vol. 116, no. 34, pp. 18 193–18 201, 2012.
[266] R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen, J. Keinonen, A. Krasheninnikov, T. Thomson, A. Geim, and I. Grigorieva, “Spin-half paramagnetism in graphene induced
by point defects,” Nat. Phys., vol. 8, no. 3, pp. 199–202, 2012.
[267] M. Zhang, Y. Ma, Y. Zhu, J. Che, and Y. Xiao, “Two-dimensional transparent hydrophobic coating based on liquid-phase exfoliated graphene fluoride,” Carbon,
vol. 63, pp. 149–156, 2013.
[268] R. e. a. Romero-Aburto, “Fluorinated graphene oxide: a new multimodal material for biological applications,” Adv. Mater., vol. 25, no. 39, pp. 5632–5637, 2013.
[269] M. Dubois, K. Gu´erin, Y. Ahmad, N. Batisse, M. Mar, L. Frezet, W. Hourani, J.-L. Bubendorff, J. Parmentier, S. Hajjar-Garreau et al., “Thermal exfoliation of fluorinated graphite,” Carbon, vol. 77, pp. 688–704, 2014.
[270] R. Zboˇril, F. Karlick`y, A. B. Bourlinos, T. A. Steriotis, A. K. Stubos, V. Georgakilas, K. ˇ Saf´aˇrov´a, D. Janˇc´ık, C. Trapalis, and M. Otyepka, “Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene,” Small, vol. 6, no. 24, pp. 2885–2891, 2010.
[271] M. Klintenberg, S. Lebegue, M. Katsnelson, and O. Eriksson, “Theoretical analysis of the chemical bonding and electronic structure of graphene interacting with group ia and group viia elements,” Phys. Rev. B, vol. 81, no. 8, p. 085433, 2010.
[272] K. Subrahmanyam, R. Voggu, A. Govindaraj, and C. Rao, “A comparative raman study of the interaction of electron donor and acceptor molecules with graphene prepared by different methods,” Chem. Phys. Lett., vol. 472, no. 1, pp. 96–98, 2009.
[273] O. Leenaerts, H. Peelaers, A. Hern´andez-Nieves, B. Partoens, and F. Peeters, “First-principles investigation of graphene fluoride and graphane,” Phys. Rev. B, vol. 82, no. 19, p. 195436, 2010.
[274] H. Chang, J. Cheng, X. Liu, J. Gao, M. Li, J. Li, X. Tao, F. Ding, and Z. Zheng, “Facile synthesis of wide-bandgap fluorinated graphene semiconductors,” Chem. Eur. J., vol. 17, no. 32, pp. 8896–8903, 2011.
[275] X. Yu, K. Lin, K. Qiu, H. Cai, X. Li, J. Liu, N. Pan, S. Fu, Y. Luo, and X. Wang, “Increased chemical enhancement of raman spectra for molecules adsorbed on fluorinated reduced graphene oxide,” Carbon, vol. 50, no. 12, pp. 4512–4517, 2012.
[276] P. Gong, Z.Wang, J.Wang, H.Wang, Z. Li, Z. Fan, Y. Xu, X. Han, and S. Yang, “One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage,” J. Mater. Chem., vol. 22, no. 33, pp. 16 950–16 956, 2012.
[277] J. Zheng, H.-T. Liu, B. Wu, C.-A. Di, Y.-L. Guo, T. Wu, G. Yu, Y.-Q. Liu, and D. B. Zhu, “Production of graphite chloride and bromide using microwave sparks,” Sci. Rep., vol. 2, 2012.
[278] I.-Y. Jeon, M. J. Ju, J. Xu, H.-J. Choi, J.-M. Seo, M.-J. Kim, I. T. Choi, H. M. Kim, J. C. Kim, J.-J. Lee et al., “Edge-fluorinated graphene nanoplatelets as high performance electrodes for dye-sensitized solar cells and lithium-ion batteries,” Adv. Funct. Mater., vol. 25, no. 8, pp. 1170–1179, 2015.
[279] A. Vizintin, M. Lozinsek, R. K. Chellappan, D. Foix, A. Krajnc, G. Mali, G. Drazic, B. Genorio, R. Dedryv`ere, and R. Dominko, “Fluorinated reduced graphene oxide as an interlayer in li–s batteries,” Chem. Mater., vol. 27, no. 20, pp. 7070–7081, 2015.
[280] X. Zhang, A. Hsu, H. Wang, Y. Song, J. Kong, M. S. Dresselhaus, and T. Palacios,“Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene,” ACS Nano, vol. 7, no. 8, pp. 7262–7270, 2013.
[281] A. E. Mansour, S. Dey, A. Amassian, and M. H. Tanielian, “Bromination of graphene: A new route to making high performance transparent conducting electrodes with low optical losses,” ACS Appl. Mater. Inter., vol. 7, no. 32, pp. 17 692–17 699, 2015.
[282] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande, “Silicene field-effect transistors operating at room temperature,”Nat. Nanotechnol., vol. 10, no. 3, pp. 227–231, 2015.
[283] L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer et al., “Buckled silicene formation on Ir (111),” Nano Lett., vol. 13, no. 2, pp. 685–690, 2013.
[284] L. Li, S.-z. Lu, J. Pan, Z. Qin, Y.-q. Wang, Y. Wang, G.-y. Cao, S. Du, and H.-J. Gao, “Buckled germanene formation on Pt (111),” Adv. Mater., vol. 26, no. 28, pp. 4820–4824, 2014.
[285] M. D´avila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, “Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene,” New J. Phys.,
vol. 16, no. 9, p. 095002, 2014.
[286] H. Liu, Y. Du, Y. Deng, and D. Y. Peide, Semiconducting black phosphorus: synthesis, transport properties and electronic applications,” Chem. Soc. Rev., vol. 44, no. 9, pp. 2732–2743, 2015.
[287] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol., vol. 9, no. 5, pp. 372–377, 2014.
[288] J. Qiu, H. Fu, Y. Xu, A. Oreshkin, T. Shao, H. Li, S. Meng, L. Chen, and K. Wu,“Ordered and reversible hydrogenation of silicene,” Phys. Rev. Lett., vol. 114, no. 12, p. 126101, 2015.
[289] Y. Du, J. Zhuang, H. Liu, X. Xu, S. Eilers, K.Wu, P. Cheng, J. Zhao, X. Pi, K.W. See et al., “Tuning the band gap in silicene by oxidation,” ACS Nano, vol. 8, no. 10, pp. 10 019–10 025, 2014.
[290] A. Molle, C. Grazianetti, D. Chiappe, E. Cinquanta, E. Cianci, G. Tallarida, and M. Fanciulli, “Hindering the oxidation of silicene with non-reactive encapsulation,”Adv. Funct. Mater., vol. 23, no. 35, pp. 4340–4344, 2013.
[291] M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. Afanas’Ev, and A. Stesmans,“Electronic properties of hydrogenated silicene and germanene,” Appl. Phys. Lett.,
vol. 98, no. 22, p. 223107, 2011.
[292] S.-Y. Lin, S.-L. Chang, N. T. T. Tran, P.-H. Yang, and M.-F. Lin, “H–si bonding-induced unusual electronic properties of silicene: a method to identify hydrogen concentration,”Phys. Chem. Chem. Phys., vol. 17, no. 39, pp. 26 443–26 450, 2015.
[293] C. Si, J. Liu, Y. Xu, J. Wu, B.-L. Gu, and W. Duan, “Functionalized germanene as a prototype of large-gap two-dimensional topological insulators,” Phys. Rev. B, vol. 89, no. 11, p. 115429, 2014.
[294] S. Y. Lin, S. L. Chang, F. L. Shyu, J. M. Lu, and M. F. Lin, “Feature-rich electronic properties in graphene ripples,” Carbon, vol. 86, pp. 207–216, 2015.