簡易檢索 / 詳目顯示

研究生: 曾冠凱
Tseng, Kuan-Kai
論文名稱: 奈米粒子薄膜疏液表面的製備與應用
Fabrication and Application of Liquid-Repellent Surfaces Made with Nanoparticulate Thin Films
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 126
中文關鍵詞: 可調控黏著性超疏水微液滴傳輸全疏滑溜高穿透度
外文關鍵詞: Superhydrophobic, Tunable adhesion, Slippery surface, Omniphobicity, Transparent
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於模仿自然界植物表面的疏液性質,包含玫瑰花瓣表面的高黏著特性、蓮葉表面的超疏水自潔特性,及豬籠草唇的滑溜特性。以雙尺寸SiO2奈米粒子 (7/22nm) 作為材料,利用靜電逐層組裝方式製備 SiO2奈米粒子薄膜,並在組裝程序中引入類乙醇體陰陽離子液胞作為模板,透過控制層數及模板比例,再經矽烷疏水化後,創造可調控黏著性的表面,並應用於微液滴的無耗損傳輸。此外,更進一步,將潤滑液體 (Fomblin® Y) 引入前述製備的超疏水SiO2薄膜孔洞內,創造出穩定且具備高穿透度的全疏滑溜表面。
    研究結果顯示,利用控制層數及模板比例可有效的改變表面型態與粗糙度,產生包括高黏著性 (如玫瑰花瓣) 及低黏著性 (如蓮葉) 的表面。將不同黏著性表面應用於微液滴傳輸,並建立無耗損微液滴傳輸之準則 (後退接觸角, θR ≥ 106o 及 遲滯接觸角, θH ≤ 59o)。此外,最適化全疏滑溜表面具有94.6%的平均穿透度,且對於七種測試液體(表面張力由72.8mN/m至18.6mN/m),皆具有全疏滑溜性質 (傾斜角, SA≤ 10o)。

    This work aims at developing biomimic liquid-repellent surfaces. Including high adhesion surface, low adhesion superhydrophobic surface and slippery surface mimic rose petal, lotus leaf and nepenthes pitcher plant respectively. Surfaces with different roughness were fabricated by assembling silica nanoparticles and sacrificial ethosome-like catanionic vesicle template on glass substrates. Electrostatic layer-by-layer (ELbL) assembly process was used. Fraction of vesicle in silica nanoparticle suspension and number of deposition layer are main control variables. After modification with a perfluorosilane, a variety of water adhesion properties created. Water microdroplet transport from bottom surfaces with different adhesion to a top surface with the highest adhesion was then systematically investigated. Moreover, stable and highly transparent slippery surface can be achieved by infusing fluorinated lubricant Fomblin® Y into the porous silanized nanoparticulate thin film. The results showed that different rough surfaces with tunable adhesion can be created. Including high adhesion surfaces like rose petal, low adhesion surfaces like lotus leaf. Using those surfaces on microdroplet transport, criteria of no-loss microdroplet transport (θR ≥ 106o and θH ≤ 59o) were finally proposed based on the adhesion properties. Moreover, stable and highly transparent slippery surfaces can be prepared. The optimized slippery surface exhibited highly transparency (average transmittance = 94.6%) and liquid repellency against seven pure liquid with surface tension from 72.8mN/m to 18.6mN/m.

    目錄 摘要 I Abstract II 延伸摘要 IV 致謝 XV 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與研究目的 2 第二章 文獻回顧 3 2.1 蓮花效應-超疏水自潔表面 3 2.2 超疏水表面理論模式 6 2.2.1 楊氏 (Young) 方程式 7 2.2.2 溫佐 (Wenzel) 方程式 8 2.2.3 卡西-巴斯特 (Cassie and Baxter) 方程式 9 2.2.4 介於溫佐和卡西-巴斯特兩狀態之間的過渡狀態 10 2.3 液固黏著性 11 2.3.1 剪切黏著性與正向黏著性 12 2.3.2 改變表面黏著性之因素---物理結構與化學組成 14 2.3.3 可調控黏著性表面之應用---無耗損微微液滴傳輸 17 2.4 超雙疏表面表面理論 19 2-5 透明超疏水表面製備 22 2.5.1 透明超疏水表面製備---表面粗糙化 23 2.5.2 透明超疏水表面製備---奈米粒子及模板方法 24 2.6 表面疏水改質 28 2.7 滑溜表面 30 2.7.1 液體引入粗糙結構之準則 35 2.7.2 粗糙結構對於滑溜液體之保持性 36 第三章 實驗 38 3.1 實驗藥品 38 3.2 儀器設備及裝置 43 3.2.1 Milli-Q超純水系統 43 3.2.2 均質機 (Homogenizer) 43 3.2.3 浸鍍機 (Dip-coatter) 44 3.2.4 箱型高溫爐 (Muffle furnace) 45 3.2.5 紫外光-可見光光譜儀 (UV/Vis spectrophotometer) 46 3.2.6 掃瞄式電子顯微鏡 (SEM) 47 3.2.7 原子力顯微鏡 (AFM) 48 3.2.8 接觸角分析儀 (Contact angle measure analyzer) 50 3.2.9動態接觸角分析儀 (Dynamic Contact Angle Analyzer, DCA) 51 3.2.10 橢圓偏光儀 ( Ellipsometer ) 53 3.3 實驗方法 54 3.3.1 液胞模板製備 54 3.3.2玻璃基板的前置清洗流程 55 3.3.3 SiO2奈米粒子薄膜製備 55 3.3.4 全疏滑溜薄膜製備 60 第四章 結果與討論 61 4.1 SiO2奈米粒子薄膜特性分析 61 4.1.1 不同模板比例及層數組裝條件下對於薄膜表面結構之影響 62 4.1.2 不同模板比例及層數組裝條件下對於薄膜粗糙度之影響 71 4.1.3 不同模板比例及層數組裝條件下對於穿透度之影響 73 4.2 SiO2奈米粒子潤濕性及黏著性之分析 76 4.2.1 薄膜潤濕性 76 4.2.2薄膜黏著性 78 4.2.3薄膜表面接觸模式構與表面粗糙結構之關聯 82 4.3 SiO2奈米粒子薄膜運用於無耗損微液滴傳輸 85 4.3.1 無耗損微液滴傳輸與接觸角之關聯及準則 88 4.3.2 無耗損微液滴傳輸之準則原因探討 92 4.4 SiO2奈米粒子薄膜疏油之可行性分析 93 4.4.1 SiO2奈米粒子薄膜高疏油之原因探討 95 4.5 全疏滑溜表面的製備 99 4.5.1 滑溜液體之選擇 100 4.5.2 薄膜表面結構及粗糙度對於滑溜特性之影響 101 4.5.3 表面改質程度對於滑溜特性之影響 104 4.5.4 滑溜特性最佳化及其模型示意圖 107 4.5.5 全疏滑溜薄膜光學特性分析 109 第五章 結論與建議 115 5.1 結論 115 5.2 建議 118 第六章 參考文獻 119 自述 126

    1. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1-8, 1997
    2. Neinhuis, C.; Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79, 667-677, 1997.
    3. Marmur, A., The Lotus Effect:Superhydrophobicity and Metastability. Langmuir , 20, 3517-3519, 2004.
    4. Shiu, J. Y.; Kuo, C. W.; Chen, P.; Mou, C. Y., Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography. Chem. Mater., 16, 561-564, 2004.
    5. Wenzel, R. N., Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem., 28, 988-994, 1936.
    6. Cassie, A. B. D.; Baxter, S., Wettability of Porous Surfaces. Trans. Faraday Soc., 40, 546-551, 1944.
    7. Rahmawan, Y.; Xu, L.; Yang, S., Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. J. Mater. Chem. A, 1, 2955, 2013.
    8. Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired Super-antiwetting Interfaces with Special Liquid-Solid Adhesion. Accounts Chem. Res., 43, 368-377, 2010.
    9. Liu, X.; Liang, Y.; Zhou F.; Liu, W., Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter , 8, 2070-2086, 2012.
    10. Feng, X.; Jiang, L., Design and Creation of Superwetting/ Antiwetting Surfaces. Adv. Master., 18, 3063-3078, 2006.
    11. Zhao, X. D.; Fan H. M.; Liu, X. Y.; Pan, H.; Xu, H. Y., Pattern-Dependent Tunable Adhesion of Superhydrophobic MnO2
    Nanostructured Film Langmuir, 27, 3224-3228, 2011.
    12. Sun T.; Feng L.; Gao X.; Liang L., Bioinspired Surfaces with Special Wettability. Accounts Chem. Res., 38, 644-652, 2005.
    13. Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L., Petal Effect: A Superhydrophobic State With High Adhesive Force. Langmuir , 24, 4114-4119, 2008.
    14. Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L., Superhydrophobic Alihned Polystyrene Nanotube Films with High Adhesive Force. Adv. Mater., 12, 1977-1981, 2005.
    15. Xi, J.; Jiang, L., Biomimic Superhydrophobic Surfaces with High Adhesive Forces. Ind. Eng. Chem. Res., 47, 6354–6357, 2008.
    16. Zhao, W.; Wang, L.; Xue, Q., Fabrication of Low and High Adhesion Hydrophobic Au Surfaces with Micro/Nano-Biomimetic Structures. J. Phys. Chem. C, 114, 11509-11514, 2010.
    17. Gao, L.; Thomas J. McCarthy., Teflon is Hydrophilic. Comments on Definitions of Hydrophobic, Shear versus Tensile Hydrophobicity, and Wettability Characterization. Langmuir, 24, 9184-9188, 2008.
    18. Gao, L.; Thomas J. McCarthy., Wetting 101o. Langmuir, 25, 14105-14115, 2009.
    19. Samuel, B.; Zhao, H.; Law, K. Y., Study of Wetting and Adhesion Interactions between Water and Various Polymer and Superhydrophobic Surfaces. J. Phys. Chem. C, 115, 14852–14861, 2011.
    20. Huang, X. J.; Kim, D. H.; Im, M.; Lee, J. H.; Yoon, J. B.; Choi, Y. K., “Lock-and-Key” Geometry Effect of Patterned Surfaces:Wettability and Switching of Adhesive Force. Small, 5, 90-94, 2009.
    21. Hong, X.; Gao X.; Jiang, L., Application of Superhydrophobic Surface with High Adhesive Force in No Lost Transport of Superparamagnetic Microdroplet. J. AM. CHEM. SOC., 129, 1478-1479, 2007.
    22. Cheng, Z.; Du, M.; Lai, H.; Zhang, N.; Sun, K., From petal effect to lotus effect: a facile solution immersion process for the fabrication of superhydrophobic surfaces with controlled adhesion. Nanoscale , 5, 2776–2783, 2013.
    23. Li, J.; Jing, Z.; Zha, F.; Yang, Y.; Wang , Q.; Lei, Z., Facile Spray-Coating Process for the Fabrication of Tunable Adhesive Superhydrophobic Surfaces with Heterogeneous Chemical Compositions Used for Selective Transportation of Microdroplets with DifferentVolumes. ACS Appl. Mater. Interfaces., 6, 8868−8877, 2014.
    24. Lai, B. Y.; Gao, X.; Zhuang, H.; Huang, J.; Lin, C.; Jiang, L., Designing Superhydrophobic Porous Nanostructures with Tunable Water Adhesion. Adv. Mater., 21, 3799-3803, 2009.
    25. Song, X.; Zhai, J.; Wang, Y.; Jiang, L., Fabrication of Superhydrophobic surfaces by Self-Assembly and Their Water-Adhesion Properties. J. Phys. Chem. B, 109, 4048-4052, 2005.
    26. 李濤; 劉長松; 張強; 李志文, ZnO基超疏水表面的製備及其與水黏著性研究. 中國科技論文在線精品論文, 2, 2417-2421, 2009.
    27. Cao, L.; Hu, H. H.; Gao D., Design and Fabrication of Micro-textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials. Langmuir , 23, 4310-4314, 2007.
    28. Cao, L.; Price, T. P.; Weiss, M.; Gao, D., Super water-and oil-repellent surfaces on Intrinsically hydrophilic and oleophilic porous silicon films. Langmuir , 24, 1640-1643, 2008.
    29. Tuteja, A.; Choi, W.; Ma, M.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E., Designing Superoleophobic surfaces. Science , 318, 1618-1622, 2007.
    30. Tuteja, A.; Choi, W.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E., Robust omniphobic surfaces. PNAS , 318, 1618-1622, 2008.
    31. Bravo, J.; Zhai, L.; Wu, Z.; Cohen, R. E.; Rubner, M. F., Transparent Superhydrophobic Films Based on Silica Nanoparticles, Langmuir, 23, 7293-7298, 2007.
    33. Cao, L.; Gao, D., Transparent Superhydrophobic and Highly Oleophobic Coatings. Faraday Discuss , 146, 57-65, 2010.
    34. D'Acunzi, M.; Mammen, L.; Singh, M.; Deng, X.; Roth M.; Auernhammer, G. K., Superhydrophobic Surfaces by Hybrid Raspberry-Like Particles. Faraday Discussions , 146, 35-48, 2010.
    35. Deng, X.; Mammen, L.; Butt, H. J.; Vollmer, D., Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating. Science, 335, 67-70, 2012.
    36. Chen, Y.; Zhang, Y.; Shi, L.; Li, J.; Xin, Y.; Yang, T.; Guo, Z., Transparent Superhydrophobic/Superhydrophilic Coatings for Self-Cleaning and Anti-Fogging. Applied Physics Letters, 101, 033701, 2012.
    37. Zhu, X.; Z. Zhang,; Ren, G.; Men, X.; Ge, B., Zhou, X., Designing transparent superamphiphobic coatings directed by carbon nanotubes, " Journal of Colloid and Interface Science, 421, 141–145, 2014.
    38. 林彥宏. 透明二氧化矽奈米粒子薄膜表面的超疏水/超親水圖案化及超疏水-超親水梯度化研究. 國立成功大學, 台灣, 台南, 2010.
    39. 李政恩. 可調控潤濕性及黏著性的透明表面之設計與製備. 國立成功大學, 台灣, 台南, 2012.
    40. 呂惟皓. 可調控潤濕性及黏著性的液胞強化奈米粒子薄膜之製備. 國立成功大學, 台灣, 台南, 2013.
    41. Yang, Y. M., Fabrication of Antireflective Self-Cleaning Surface Using Layer-by-Layer Assembly Techniques. Chap. 10 in Self-Cleaning Materials and Surfaces: A Nanotechnology Approach; Daoud, W. A. (Ed.), Wiley: New York, 2013.
    42. Plueddeman, E. P., Silane Coupling Agents. Plenum Press: New York, 1991.
    43. Pellerite, M. J.; Wood, E. J.; Jones, V. W., Dynamic Contact Angle Studies of Self-Assembled Thin Films from Fluorinated Alkyltrichlorosilanes. J. Phys. Chem. B, 106, 4746-4754, 2002.
    44. Vallant, T.; Kattner, J.; Brunner, H.; Hoffmann, H., Investigation ofthe Formation and Structure of Self-Assembled Alkylsiloxane Monolayers on Silicon Using in Situ Attenuated Total Reflection Infrared Spectroscopy. Langmuir , 15, 5339-5346, 1999.
    45. Chen, L. J.; Tsai, Y. H.; Liu, C. S.; Chiou, D. R.; Yeh, M. C., Effect of Water Content in Solvent on the Critical Temperature in the Formation of Self-assembled Hexadecyltrichlorosilane Monolayers on Mica. Chem. Phys. Lett., 346, 241-245, 2001.
    46. Wong, T. S.; Kang, S. H.; Tang, S. K.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J., Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature , 477, 443-447, 2011.
    47. Daniel, D.; Mankin, M. N.; Belisle, R. A.; Wong, T. S.; Aizenberg, J. Lubricant-Infused Micro/Nano-Structured Surfaces with Tunable Dynamic Omniphobicity at High Temperatures. Appl. Phys. Lett., 102, 231603 (4 pages), 2013.
    48. Chen, L.; Geissler, A.; Bonaccurso, E.; Zhang, K., Transparent Slippery Surfaces Made with Sustainable Porous Cellulose Lauroyl Ester Films. ACS Appl. Mater. Interfaces, 6, 6969-6976, 2014.
    49. Epstein, A. K.; Wong, T. S.; Belisle, R. A.; Boggs, E. M.; Aizenberg, J. Liquid-Infused Structured Surfaces with Exceptional Anti-Biofouling Performance. Proc. Natl. Acad. Sci. U.S.A., 109, 13182−13187, 2012..
    50. Yao, X.; Hu, Y.; Grinthal, A.; Wong, T. S.; Mahadevan L.; Aizenberg, J., Adaptive Fluid-Infused Porous Films with Tunable Transparency and Wettability, Nature Mater., 12, 529-534, 2013.
    51. Lalia, B. S.; Anand, S.; Varanasi, K. K.; Hashaikeh, R., Fog-Harvesting Potential of Lubricant-Impregnated Electrospun Nanomats. Langmuir , 29, 13081-13088, 2013.
    52. Okada, I.; Shiratori, S., High-Transparency, Self-Standable Gel-SLIPS Fabricated by a Facile Nanoscale Phase Separation. ACS Appl. Mater. Interfaces, 6, 1502-1508, 2014.
    53. Kim, P.; Wong, T. S.; Alvarenga, J.; Kreder, M. J.; Adorno-Martinez, W. E.; Aizenberg, J. Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance. ACS Nano, 6, 6569−6577, 2012.
    54. Lafuma, A.; Quéré, D., Slippery Pre-Suffused Surfaces. Europhys. Lett., 96, 56001 (4 pages), 2011.
    55. Kim, P.; Kreder, M. J.; Alvarenga, J.; Aizenberg, J., Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates. Nano Lett., 13, 1793-1799, 2013.
    56. Vogel, N.; Belisle, R. A.; Hatton, B.; Wong, T. S.; Aizenberg, J. Transparency and Damage Tolerance of Patternable Omniphobic Lubricated Surfaces Based on Inverse Colloidal Monolayers. Nat. Commun., 4, 1-10, 2013.
    57. Anand, S.; Paxson, A. T.; Dhiman, R.; Smith, J. D.; Varanasi, K.K. Enhanced Condensation on Lubricant-Impregnated Nanotextured Surfaces. ACS Nano, 6, 10122−10129, 2012.
    58. Subramanyam, S. B.; Rykaczewski, K.; Varanasi, K. K. Ice Adhesion on Lubricant-Impregnated Textured Surfaces. Langmuir, 29, 13414−13418, 2013.
    59. Jenner, E.; D'Urso, B., Wetting States on Structured Immiscible Liquid Coated Surfaces. Appl. Phys. Lett., 103 , 251606 (4 pages), 2013.
    60. Huang, X.; Chrisman, J. D.; Zacharia, N. S., Omniphobic Slippery Coatings Based on Lubricant-Infused Porous Polyelectrolyte Multilayers. ACS Macro Letters , 2, 826-829, 2013.
    61. Zhu, L.; Xue, J.; Wang, Y.; Chen, Q.; Ding, J.; Wang, Q., Ice-Phobic Coatings Based on Silicon-Oil-Infused Polydimethylsiloxane. ACS Appl. Mater. Interfaces, 5, 4053-4062, 2013.
    62. Chen, J.; Dou, R.; Cui, D.; Zhang, Q.; Zhang, Y.; Xu, F.; Zhou, X.; Wang, J.; Song, Y.; Jiang, L., Robust Prototypical Anti-icing Coatings with a Aelf-Lubricating Liquid Water Layer Between Ice and Substrate. ACS Appl. Mater. Interfaces, 5, 4026-4030, 2013.
    63. Lee, D.; Rubner, M. F, Cohen R. E., All-nanoparticle Thin-Film Coatings. Nano Lett, 6, 2305-2312, 2006.

    64. Lin, Y. H.; Su, K. L.; Tsai, P. S.; Chuang, F. L.; Yang, Y. M., Fabrication and Characterization of Transparent Superhydrophilic/Superhydrophobic Silica Nanoparticulate thin films. Thin Solid Films, 519, 5450-5455, 2011.

    下載圖示 校內:2018-07-29公開
    校外:2018-07-29公開
    QR CODE