簡易檢索 / 詳目顯示

研究生: 鄭元瑋
Zheng, Yuan-Wei
論文名稱: SLM製造與商用Inconel 718在650℃之高溫氧化行為
Oxidation behavior of SLM fabricated and commercial Inconel 718 at 650℃
指導教授: 陳鐵城
Chen, Tei-Chen
共同指導教授: 鄭友仁
Jeng, Yeau-Ren
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 107
中文關鍵詞: IN-718SLM製程參數熱處理顯微組織高溫氧化行為
外文關鍵詞: IN-718, SLM manufacturing parameters, heat treatment, microstructure, oxidation behavior
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層製造相較傳統製造,不僅能減少耗材的損失,且能賦予產品更複雜的幾何結構,是製造業相當重大的技術,本文以SLM製造IN-718鎳基合金,分別探討SLM製程參數、熱處理及高溫氧化行為,最後與傳統製造之商用IN-718做比較。
      設定SLM製程參數為製造的第一步,本研究針對製程參數中的雷射功率及掃描速度進行探討,且能將此兩項參數透過計算轉換成線性能量密度,根據本研究結果,雷射功率、掃描速度及能量密度對材料的機械性質有所變化,且在顯微組織中有更明顯的缺陷差異,因此對於產品的製造,優化製程參數能在不影響製造成本下,提高材料的性質。
      IN-718是一種可進行析出硬化的鎳基合金,根據文獻指出典型的結晶相有γ相、γ′相、γ′′相、δ相、MC碳化物相及Laves相,透過熱處理能有效改變材料的結晶相,進而讓材料的機械性質更好。經過初步的SLM製程參數比較,本研究將最佳的SLM製程參數樣品進行熱處理,分別探討機械性質、顯微組織以及高溫氧化行為。當IN-718碰上高溫時,合金表面會生成一層氧化層,保護內部防止腐蝕,因此常被應用於高溫環境,如渦輪零件、發動機等。本研究為了更深入分析高溫氧化行為,將SLM樣品、熱處理過後的SLM樣品與商用Comm樣品放置於650℃環境中,滿足渦輪運作的工作溫度及規範,模擬實際應用的高溫環境,進而探討與比較,透過維氏硬度、SEM、EDS、XRD及Raman等儀器,分析各樣品在650℃的溫度下,呈現之機械性質、顯微組織、氧化層結構與氧化層厚度,根據實驗結果,經過熱處理的SLM樣品不僅在機械性質上表現最佳,且高溫氧化行為也呈現最好的狀態,其次則為SLM樣品,因此也表示SLM積層製造技術相對於傳統製造,能使產品擁有更好的性質。

    Compared with traditional manufacturing, Selective Laser Melting (SLM) cannot only reduce the loss of consumables, but also provide products with more complex geometric structures. In this thesis, three experimental steps are designed: first, investigation of SLM manufacturing parameters on microstructure of this alloy; second, study of heat treatment influence on microstructure and properties of Inconel 718 manufactured by SLM; third, investigation of high-temperature oxidation behavior of SLM manufactured sample in as-printed and with heat treatment conditions and a commercially available Inconel 718. According to the microstructure investigations by Scanning Electron Microscopy (SEM) and Optical Microscopy (OM), high scanning speed can lead to defects such as pores, cracks, and un-melted particles. High energy density might cause spatter, resulting in spheroidization at the bottom of the molten pool. The sample with (200W, 700mm/s) showed the best microstructure with least defects and was chosen for further experiments in next steps. In the second step, heat treatment was applied to the chosen sample from the first step. It was found that heat treatment can effectively change the crystalline phase of Inconel 718 manufactured by SLM and γ, γ′, γ′′, δ phases were detected in heat treated SLM sample. In addition, the microstructure of SLM-Inconel 718 changed dramatically as a result of heat treatment; a grainy microstructure structure was obviously formed after heat treatment. The heat treated SLM sample showed higher Vickers hardness values than the as-printed SLM sample. For the third step, in order to analyze the high-temperature oxidation behavior, this study exposed as-printed and heat-treated SLM samples and commercial samples to 650°C for different times of 1, 24, 48 and 72h to simulate the high-temperature environment of practical applications. According to microstructure investigations heat treated samples had more homogenous oxidation than as-printed SLM and commercial samples. Moreover, heat-treated SLM alloy showed the highest value for Vickers harness in all oxidation times.

    目錄 中文摘要 I Extended Abstract II 致謝 XIII 目錄 XIV 表目錄 XVII 圖目錄 XIX 符號說明 XXIII 第一章 緒論 1 1-1 前言 1 1-2 簡介 2 1-2-1 Inconel alloy-718 2 1-2-2 積層製造技術 3 1-3 文獻回顧 4 1-3-1 SLM製造之Inconel alloy-718 4 1-3-2 Inconel alloy-718之熱處理 5 1-3-3 高溫氧化行為 6 1-4 動機與目的 7 1-5 本文架構 8 第二章 基礎理論與儀器操作 9 2-1 Inconel alloy-718 結晶相 9 2-2 高溫氧化行為 11 2-3 實驗儀器 12 2-3-1 金相前處理設備 12 2-3-2 維氏硬度 13 2-3-3 阿基米德原理 14 2-3-4 光學顯微鏡(OM) 15 2-3-5 掃描式電子顯微鏡(SEM) 15 2-3-6 能量色散X射線譜(EDS) 16 2-3-7 X射線繞射儀(XRD)-布拉格定律 17 2-3-8 拉曼光譜學(Raman Spectra) 19 第三章 實驗方法與流程 21 3-1 樣品製備 21 3-1-1 樣品製程與參數 21 3-1-2 金相樣品製備 24 3-1-3 熱處理條件 25 3-1-4 高溫氧化條件 26 3-2 實驗流程 27 第四章 實驗結果與討論 29 4-1 探討SLM製程參數之影響 29 4-1-1 不同SLM製程參數對硬度之影響 29 4-1-2 不同SLM製程參數對密度之影響 32 4-1-3 不同SLM製程參數對顯微組織之影響 34 4-1-4 不同SLM製程參數對結晶相之影響 48 4-1-5 相同SLM製程參數之比較(再現性) 50 4-1-6 以EDS分析SLM樣品 52 4-2 探討熱處理之影響 54 4-2-1 熱處理對硬度之影響 54 4-2-2 熱處理對顯微組織之影響 55 4-2-3 以EDS分析HT-SLM樣品 60 4-2-4 熱處理對結晶相之影響 63 4-3 高溫氧化行為 65 4-3-1 比較高溫氧化後SLM、HT-SLM及Comm樣品之硬度 65 4-3-2 比較高溫氧化後SLM、HT-SLM及Comm樣品之顯微組織 66 4-3-3 以XRD分析高溫氧化後之結晶相 79 4-3-4 以Raman分析高溫氧化後之分子結構 83 4-3-5 氧化層厚度 87 第五章 結論與未來展望 101 5-1 結論 101 5-2 未來展望 103 參考文獻 104

    [1] H. Kodama, "Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer," Review of Scientific Instruments, vol. 52, no. 11, pp. 1770-1773, 1981.
    [2] H. Kodama, "A Scheme for Three-Dimensional Display by Automatic Fabrication of Three-Dimensional Model," IEICE TRANSACTIONS on Electronics, Vols. J64-C, no. 4, pp. 237-241, 1981.
    [3] High-Performance Alloys, Corporation, Special Metals, 2010.
    [4] 工業4.0, The Boston Consulting Group, 2016.
    [5] J.E. Beck, F.B. Prinz, D.P. Siewiorek, L.E. Weiss, "Manufacturing Mechatronics Using Thermal Spray Shape Deposition," 1992 Solid Freeform Fabrication Symposium, pp. 272-279, 1992.
    [6] ASTM F42/ISO TC 261 Develops Additive Manufacturing Standards, ASTM International, 2009.
    [7] P. K. Neghlani, "SLM additive manufacturing of Alloy 718 Effect of process parameters on microstructure and properties,'' University West, Trollhättan, Sweden, 2016.
    [8] W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng, and S. Yusheng, "Effect of molten pool boundaries on the mechanical properties of selective laser melting parts," Journal of Materials Processing Technology, vol. 214, no. 11, pp. 2660-2667, 2014.
    [9] K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, F. Rezai, "Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties," Materials Science and Engineering A, vol. 735, pp. 182-190, 2018.
    [10] Q. Jia, D. Gu, "Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties," Journal of Alloys and Compounds, vol. 585, pp. 713-721, 2014.
    [11] H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, "Effect of scanning strategy on mechanical properties of selective laser melted Inconel 718," Materials Science and Engineering A, vol. 753, pp. 42-48, 2019.
    [12] M. Amirjan, H. Sakiani, "Effect of scanning strategy and speed on the microstructure and mechanical properties of selective laser melted IN718 nickel-based superalloy," The International Journal of Advanced Manufacturing Technology, vol. 103, pp. 1769-1780, 2019.
    [13] S. Manikandan, D. Sivakumar, K.P. Rao, M. Kamaraj, "Effect of weld cooling rate on Laves phase formation in Inconel 718 fusion zone," Journal of Materials Processing Technology, vol. 214, no. 2, pp. 358-364, 2014.
    [14] H. Qi, M. Azer, A. Ritter, "Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718," Metallurgical and Materials Transactions A, vol. 40, pp. 2410-2422, 2009.
    [15] S. Sui, H. Tan, J. Chen, C. Zhong, Z. Li, W. Fan,, "The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing," Acta Materialia, vol. 164, pp. 413-427, 2019.
    [16] W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, V. Hansen, "Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment," Materials Science and Engineering A, vol. 689, pp. 220-232, 2017.
    [17] X. Li, J.J. Shi, C.H. Wang, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li, G.F. Chen, "Effect of heat treatment on microstructure evolution of Inconel 718 alloy fabricated by selective laser melting," Journal of Alloys and Compounds, vol. 764, pp. 639-649, 2018.
    [18] W. Huang, J. Yang, H. Yang, G. Jing, Z. Wang, X. Zeng, "Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties," Materials Science and Engineering A, vol. 750, pp. 98-107, 2019.
    [19] J.R. Zhao, F.Y. Hung, T.S. Lui, "Microstructure and tensile fracture behavior of three-stage heat treated inconel 718 alloy produced via laser powder bed fusion process," J Mater Res Technol, vol. 9, no. 3, pp. 3357-3367, 2020.
    [20] J. Schneider, B. Lund, M. Fullen, "Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens," Additive Manufacturing, vol. 21, pp. 248-254, 2018.
    [21] Q. Jia,D. Gu, "Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms," Optics & Laser Technology, vol. 62, pp. 161-171, 2014.
    [22] 魏豐義, “淺談高溫腐蝕,” 防蝕工程, 第二卷, 第二期, 7-18頁, 1988.
    [23] 黃嘉鵬, 楊斌, 汪航, “鎳鉻鋁合金的高溫氧化行為,” 有色金屬科學與工程, 第六卷, 第四期, 2015.
    [24] G. J. Liao, Y. F. Chou, F. P. Cheng, W. Kai, "Study on Air Oxidation of Ni2TiAl at 800~1200℃," Journal of Chinese Corrosion Engineering, vol. 31, no. 2, pp. 22-31, 2017.
    [25] L. Chen, Y. Sun, L. Li, X. Ren, "Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting," Corrosion Science, vol. 169, 2020.
    [26] Y.J. Kang, S. Yang, Y.K. Kim, B. AlMangour, K.A. Lee, "Effect of post-treatment on the microstructure and high-temperature oxidation behaviour of additively manufactured inconel 718 alloy," Corrosion Science, vol. 158, 2019.
    [27] Y.W. Luo, B. Zhang, Z.M. Song, C.P. Li, G.F. Chen, G.P. Zhang, "A comparative investigation of long-term oxidation behavior of selective laser melting–fabricated Inconel 718 at 650 °C," Journal of Materials Research, vol. 35, no. 15, pp. 2036-2045, 2020.
    [28] 鄭景元, 黃俊仁, 黃朝鈿, 游佳憲, 郭柏辰, “Inconel 718積層製造製程參數最佳化,” 於 中國機械工程學會第三十七屆全國學術研討會論文集, 雲林縣, 2020.
    [29] 劉永長, 郭倩穎, 李沖, 梅云鵬, 周曉勝, 黃遠, 李會軍, “Inconel 718 高溫合金中析出相演變研究進展,” 金屬學報, 第五十二卷, 第十期, 1259-1266頁, 2016.
    [30] I. Kirman, D.H. Warrington, "The precipitation of Ni3Nb phase in a Ni-Fe-Cr-Nb-alloy," Metallurgical Transactions, vol. 1, pp. 2667-2675, 1970.
    [31] R. H. Caless, R. W. Hatala, "The effect of Laves phase on the mechanical properties of wrought and cast + HIP Inconel 718," Superalloys 718, 625 and Various Derivatives, pp. 375-388, 1991.
    [32] S. B. VÉLEZ, "OXIDATION KINETICS AND MECHANISMS IN HT-9 FERRITIC/MARTENSITIC STAINLESS STEEL," University of Florida, Gainesville, Florida, United States, 2005.

    無法下載圖示 校內:2026-08-16公開
    校外:2026-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE