| 研究生: |
洪惠全 HUNG, HUI-CHUAN |
|---|---|
| 論文名稱: |
互補式金氧半導體積體電路故障分析技術比較 The Comparison of Failure Analysis Technologies in Complementary Metal Oxide Semiconductor Integrated Circuit |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 被動式電壓對比 、微光偵測術 、熱束產生電流變化術 、互補式金氧半導體 、積體電路 、液晶偵熱術 、故障分析 、螢光微熱偵測術 |
| 外文關鍵詞: | Failure Analysis, Passive voltage contrast, Fluorescent micro-thermal microscopy, Integrated Circuit, Thermal beam induced current variation, Liquid crystal microscopy, Emission microscopy, Complementary Metal Oxide Semiconductor |
| 相關次數: | 點閱:136 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體工業開始於 20 世紀下半, 並迅速成長. 整個業界的產能很快在 20 世紀末超過市場的消耗量. 產品的生命週期也變得更短壓縮到獲利. 特別是產業垂直分工, 更降低半導體工業界的進入門檻, 導致上市時程成為關鍵. 目前在電腦的輔助下可以很精準的控制設計和生產時程, 但是第一批的良率常常非常低. 導致上市時程延長, 減低獲利, 甚至於賠錢. 低良率可能肇因於設計, 製造或兩者的相互作用並且形成高阻值或漏電. 故障分析成找尋高阻值或漏電的成因在良率提升上扮演相當重要的角色.
故障分析的技術如液晶偵熱術 (liquid crystal microscopy), 螢光微熱偵測術 (fluorescent micro-thermal microscopy), 微光偵測術 (emission microscopy), 熱束產生電流變化術 (thermal beam induced current variation), 和被動式電壓對比 (passive voltage contrast) 被用來定位故障位置, 本論文探討數個真實案例的故障機制和找到的缺陷, 以比較各故障分析術的優缺點.
The industry of integrated circuit (IC) semiconductor started at the middle of twenty century and grows fast at the second half century. The capacity of the IC industry exceeds the consumption of the market at the end of twenty century. The cycle time of a product getting shorter compresses the profile. Especially the vertical division of semiconductor industry decreases the barrier of entry. The time-to-market becomes critical to the profit. The design and manufacturing period with computer-aided automation are well controlled and very precisely, but yield rate of the first cut always get low yield. This violently extends the time-to-market, reduces profit or even losses money. The low yield may comes from design, manufacturing or interaction of both and almost induced by high resistance or leakage circuit. Failure analysis to identify the cause of high resistance and leakage plays a significant role to improve the yield.
The failure analysis technologies, liquid crystal microscopy, fluorescent micro-thermal microscopy, emission microscopy, thermal beam induced current variation, and passive voltage contrast are used to locate the failure site. Several real cases are demonstrated in this thesis to discuss the possible failure mechanism and find out the defect, in order to compare these failure analysis technologies.
References:
1. TI web home, Jack St. Clair Kilby , “The Chip that Jack Built Changed the World”.
2. Press released at web of Samsung press cent on June 23 2005, “SAMSUNG First to Produce 1 Gb DDR2 Dynamic Random-Access Memory (DRAM) Using 90 Nanometer Process Technology”.
3. ISSCC 2003,G. MOORE “No exponential is forever, but ‘forever’ can be delayed”.
4. Source: TSMC Market Research Program estimates, Company Reports, IC insights, April 2005.
5. Source: IC Insights March 2005.
6. T. Williams, R.Kapur,M Mercer, R. Dennard, and W. Maly, “IDDQ Testing for High Performance CMOS- The Next Ten Years”, Proceedings of the European Design and Test Conference ( EDTC’96), 1996, pp.578.
7. James Lin, “ Challenges for SoC Design in Very Deep Submicron Technology”, National Semiconductor, ISSS2003, Oct. 2003.
8. Manish P. Pagey, Hot-carrier reliability simulation in aggressively scaled mos transistors. 2003, P14-P20.
9. S.Z. Sze, , John Wiley and Sons, Physics of Semiconductor Devices, Wiley, New York, 1981, pp14.
10. M. P. Godlewski, C. R. Baraona, and H. Brandhorst, “ Low-high junction theory applied to solar cells,” in Proceeding IEEE Photovol. Spec. Conference, 1973, pp.40-49.
11. Steven Frank, Wilson Tan, and John West,”Electrical Characterization” in “ Failure Analysis of Integrated Circuits: Tools and Techniques”, Kluwer Academic Publishers, 1999, pp.13.
12. S. Khandekar, K. S. Willis “Liquid Crystal Microscopy”, Electronics Failure Analysis - Seminar Referen ce, p. 139 ASM International 1998.
13. Adam K. Fontecchio, “Multiplexing studies ofholographically-formed polyer dispersed liquid crystals: morphology, structure, and device applications”, May 2003, pp 108.
14. A. Csendes, V.Székely, M. Kerecsen-Rencz : Thermal mapping with liquid crystal method, Microelectronic Engineering V.31, pp.281-290 (1996).
15. G. Aszódi, J. Szabóné, I. Jánossy, V.Székely: High resolution thermal mapping of microstructures using nematic liquid crystals, Solid-State Electronics, V.24,No.12. pp.1127-1133 (1981).
16. Kolodner, P., and A. Tyson. 1982. Microscopic fluorescent imaging of surface temperature profiles with 0.01°C resolution. Appl. Phys. Lett. 40:782-784.
17. Kolodner, P., and A. Tyson. 1983. Remote thermal imaging with 0.7-micron spatial resolution using temperature-dependent fluorescent thin films. Appl. Phys. Lett. 42:117-119.
18. Barton, D. L. 1994. Fluorescent microthermographic imaging. Proc. Int. Symp. Test. Failure Anal. 20:13-18.
19. Crosby, G. A., R. E. Whan, and R. M. Alire. 1961. Intramolecular energy transfer in rare earth chelates. Role of the triplet state. J. Chem. Phys. 34:743-748.
20. Winston, H., O. J. Marsh, C. K. Suzuki, and C. L. Telk. 1963. Fluorescence of europium thenoyltrifluoroacetonate. I. Evaluation of laser threshold parameters. J. Chem. Phys. 39:267-271.
21. Bhaumik, M. L. 1964. Quenching and temperature dependence of fluorescence in rare earth chelates. J. Chem. Phys. 40:3711-3715.
22. Runzi Chang, Member, IEEE, and Costas J. Spanos, Fellow, IEEE. “Dishing-Radius Model of Cpooer CMP Dishing Effects”, IEEE Transactions on Semiconductor Manufacturing, vol. 18, No. 2, May 2005.
23. Mark Pitt Robeson, “Temperature Dependence of Conductivity in a Metal, a. Semiconductor, and a Superconductor”, http://www.phys.vt.edu, 2005.
24. B F Hann, “An approach to Electrical Conductivity in Solids”, Physics Education, IOP Electronic Journals, 4 pp.207-211, 1969.
25. Thomas Johann Seebeck (1770-1831), ERIC Weisstein’s World of Biography, Wolfram Research, http://scienceworld.wolfram.com
26. Baltes, H., Moser, D., Freidemanm, V., “ Thermoelectric Microsensors and Mechanical Sensors,” Sensors vol 7 ed. Bau, H.H., de Rooji, B., Kleck, VCH Verlag, Weinheim, pp.13-55,1994.
27. S.M. Sze, “ Semiconductor Sensors”, New York: Wiley, 1994.
28. Jaeggi, D. “ Thermal Converters by CMOS Technology,” Ph D. Thesis, Zurich: Physical Electronics Laboratory. 1996.
29. Dana Tesdale, “ Solid Propellant Microrockets”, Master Thesis, EE and CS, University of California.S
30. Baur, M. Kicherer, "1.55 um and 1.3 um DFB lasers with electro absorption modulators for high-speed transmission systems", Second Joint Symposium on Opto- and Microelectronic Devices and Circuits (SODC) 2002, Stuttgart, Mar.2002.
31. Warrant J, Smith, “ The Design of Optical Systems”, McGraw-Hill, 3rd BK & CD edition, July 2000.
32. Michael A. Ferenczi, “Light Microscopy - Beyond the limits of optical resolution”, National Institute for Medical Research, 1997.
33. S. Sze, “Physics of Semiconductor Devices”, John Wiley and Sons, New York, 1981. Jellison, Jr., G. E. and F. A. Modine, Applied Physics Letter 41, 2, pp. 180 –182, 1982. Hand book of Optical Constants, E. Palik, Ed., Academic Press, 1985.
34. S. J. Bennett, “The thermal expansion of copper between 300 and 700K”, Journal Physics D: Applied Physics 11 pp. 777-780,1978.
35. T. Williams, R.Kapur,M Mercer, R. Dennard, and W. Maly, “IDDQ Testing for High Performance CMOS- The Next Ten Years”, Proceedings of the European Design and Test Conference ( EDTC’96), 1996, pp.578.
36. Donald A. Neamen, “Semiconductor Physics & Devices Basic Principles“, IRWIN, second edition, ISBN 0-256-20869-7, 1997.
37. Manish P. Pagey, Hot-carrier reliability simulation in aggressively scaled mos transistors. 2003, P14-P20.
38. S. Sze, Physics of Semiconductor Devices, John Wiley and Sons, New York, 1981.
39. A. Duncan, U. Ravaioli, and J. Jakumeit, “ Full-Band Mote-Carlo Investigation of Hot-Carrier Trends in the Scaling of Metal-Oxide-Semiconductor Ffield-Effect Transistors”, IEEE Transactions on Electorn Devices, vol. 45, no. 4, P867, Apr. 1998.
40. R. Hulfachor, K. Kim, M. Littlejohn, and C. Osburn, “Comparative Analysis of Hot Electron Injection and Induced Device Degradation in Scaled 0.1um SOI n-MOSFETs using Monte Carlo Simulation”, IEEE Electron Device Letters, vol. 17, no. 2, P53, Feb. 1996.
41. J. Higman, K. Hess, C. Hwang, and R. Dutton, “ Coupled Monte Carlo-Drift Diffusion Analysis of Hot-Electron Effects in MOSFETs”, IEEE Transactions on Electron Devices, vol. 36, no. 5, pp. 930, May 1989.
42. S. Sze, Physics of Semiconductor Devices, John Wiley and Sons, New York, 1981.
43. LenWB, Liu YY, Phang JCH Chan DSH, “ Near IR Continuous Wavelength Spectroscopy of Photon Emissions from Semiconductor Device”, Procedure International Symposium for Testing and Failure Analysis, pp311-316, 2003.
44. Maria Eloisa Castagna et al., "High Efficiency Light Emitting Devices in Silicon", Materials Science and Engineering B, 15 December 2003, pp. 83-90.
45 J. C. White and J. G .Smith, “Observation of carrier densities in silicon devices by infrared emission”, Journal of Physics E: Scientific Instruments 10 pp. 817-825, 1977
46. E.I. Cole Jr., P. Tangyunyong, D.A. Benson, D.L. Barton, “TIVA and SEI Developments for Enhanced Front and Backside Interconnection Failure Analysis”, Proceedings of the 10th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, 1999, pp991-996.
47. G. Deboy and J. Kolzer, “Fundamentals of light emission from silicon devices”, Semiconductor Science and Technology 9, pp. 1017-1032, 1994.
48. Daniel L. Barton, Edward I. Cole Jr., Karoline Berhard-Hofer, “Flip-Chip and Backside Sample Preparation Techniques“, Microelectronics Failure Analysis, Oct 2004, pp 43 –49.
49. J. Colvin, “BGA and advanced package Wire to Wire bonding for Backside emission microscopy”, International Symposium Testing and Failure Analysis proceedings, pp.365-375, 1999.
50. Planck, Max, "On the Law of Distribution of Energy in the Normal Spectrum (http://dbhs.wvusd.k12.ca.us/webdocs/Chem-History/Planck-1901/ Planck-1901.html)". Annalen der Physik, vol. 4, p. 553 ff (1901).
51. K. SCHRODER, “ Advanced MOS Devices”, Readings, Massachusets, Addison-Wesley Publication. Co. 1987.
52. Chris McFee, “Type of Noise in A CCD”, CCD Group, Detector Physics Group, Mullard Space Science Laboratory , July, 2005.
53. D.E. Groom et al., “Quantum efficiency of a back-illuminated CCD imager: an optical approach,” inProc. SPIE, 3649, pp. 80–90, 1999.
54. S.E. Holland, D.E. Groom, N.P. Palaio, R.J. Stover, and M. Wei, “Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon,” IEEE. Trans. Elec. Dev., 50, pp. 225–238, 2003
55. W. Maly, C. Ouyang, S. Ghosh, and S. Maturi, “Detection of an antenna effect in VLSI designs”, IEEE internal Symposium on Defect and Fault Tolerance in VLSI System, pp.86-94, Nov. 1996.
56. S. Sze, “Physics of Semiconductor Devices”, John Wiley and Sons, New York, 1981.
57. David P. Vallett. "IC Failure Analysis: The Importance of Test and Diagnostics," IEEE Design and Test of Computers, vol. 14, no. 3, pp. 76-82, July-September, 1997.
58. Allen R. Sampson, “Scanning Electron Microscopy”, Advanced Research Systems, December 2, 1996.
59. Anderson CA, ed., 1973, Microprobe Analysis, John Wiley & Sons, pp 571.
60. James H. Wittke, “Electron Microprobe”, Electron Microprobe Laboratory & Meteoritics Laboratory, Bilby Research Center, Northern Arizona University.
61. Brian Robertson, Xingzhong Li, QiangMin Wei, “Central Facility for Electron Microscopy”, Center for Materials Research and Analysis University of Nebraska-Lincoln.
62. Aphrodite Indares, Michael Shaffer, “Specimen Interaction and Information Generated with Electron Beam Instruments”, Electron Probe,2, pp 9-11, 2005.
63. Goldstein JI, Newbury DE, Echlin P, Joy DC, Fiori C & Lifshin E, “Scanning Electron Microscopy and X-ray Microanalysis”, Plenum Press, pp. 673, 1981.
64. Goldstein JI, Newbury DE, Echlin P, Joy DC, Romig, A.D. Jr., Eric L., 1992, “ Scanning Electron Microscopy and XX-ray Microanalysis”, A text for biologists, materials scientists, and geologist. 2nd edition, Plenum Press, New York.
65. Wittry, DB, 1973, Applications of the electron microprobe to solid- state electronics, in Anderson, C.A., ed., Microprobe Analysis, Wiley, 123-187.
66. Vick Guo, “ Introduction to Electron Microscopy and Microanalysis”, Oct. 21, 2005, pp.7-11.
67. J.A. Wert, “SCANNING ELECTRON MICROSCOPY”, chapter 7, Laboratory Manual Chapters, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22903.
68. I.M. Watt, “The Principle and Practice of Electron Microscopy”, Cambridge University Press, London 1985, pp.67.
69. K. S. Sim, J. T. L. Thong, J. C. H. Phang, “Effect of Shot Noise and Secondary Emission Noise in Scanning Electron Microscope Images”, The Journal of Scanning Microscopies, SCANNING VOL. 26, pp.36–40, 2004.
70. H. Seiler, “ Secondary Electron Emission in the Scanning Electron Microscope”, Journal of Applied Physics, 54, pp. R1-R8, 1983.
71. Newbury, D.E., Joy, D.C., Echlin, P., Fiori, C.E., and Goldstein, J.I. 1986. Advanced Scanning Electron Microscopy and X-Ray Microanalysis. Plenum, New York.
72. Gabriel, B.L. 1985. SEM: A Users Manual for Materials Science. American Society for Metals, Menlo Park, Ohio.
73. Newbury, D.E., Joy, D.C., Echlin, P., Fiori, C.E., and Goldstein, J.I. 1986. Advanced Scanning Electron Microscopy and X-Ray Microanalysis. Plenum, New York.
74. V. Baglin, J. Bojko, O. Grobner, B. Henrist, N. Hilleret, C. Scheuerlein, M. Taborelli CERN, Geneva, Switcerland, “The Secondary Electron Yield of Technical Materials and its Variation with Surface Treatments”,Proceedings of EPAC, Vienna, Astria, 2000.
75. Suszcynsky, D.M., Borovsky, J.E., and Goertz, C.K., “ Secondary Electron Yields of Solar System Ices”, Advanced Space Resolution. !3, pp.183-187.
76. ” Th Science of Static Electricity”, The Bakken Library and Musium.
77. Jbara O., Belhaj M., Odof S., Msellak K., Rau E. I., Andrianov M. V.,” Surface Potential Measurements of Electron-Irradiated Insulators using Backscattered and Secondary Electron Spectra from an Electrostatic Toroidal Spectrometer Adapted for Scanning Electron Microscope Applications”, Review Of Scientific Instruments, Vol 72, Iss 3, 2001.
78. S. Sze, Physics of Semiconductor Devices, John Wiley and Sons, New York, 1981.