簡易檢索 / 詳目顯示

研究生: 蘇俊銘
Su, Chun-Ming
論文名稱: 聚氧化乙烯/過氯酸鋰/聚(4-苯乙烯磺酸)鋰鹽混摻型高分子電解質之離子導電機制探討
Mechanisms of Ionic Conductivity on Poly(ethylene oxide)/Lithium Perchlorate/Poly(4-styrenesulfonic acid) lithium salt blend polymer electrolytes
指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 94
中文關鍵詞: 聚(4-苯乙烯磺酸)鋰鹽離子導電機制高分子電解質
外文關鍵詞: Poly(4-styrenesulfonate) lithium salt, ion conduction mechanism, polymer electrolyte
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由兩種混摻型高分子電解質去探討離子導電機制,其一是(PEO/LiClO4)雙離子系統,另一是(PEO/PSS-Li)單離子系統,分別在不同溫度下使用AC-Impendance,量測出離子導電度,並對離子導電度跟溫度關係用Arrhenius方程式以及Volgel-Tamman-Fulcher(VTF)方程式去做趨勢圖。鋰離子二次電池中的電解質,鋰離子移動方式,會對離子導電度大小及離子導電機制,或是其他電化學性質有所影響。
    本研究也量測兩高分子電解質系統鋰離子遷移數,去了解鋰離子在離子導電度中的貢獻程度,還有使用DSC、TGA量測去了解材料的熱性質。最後使用線性掃瞄伏安法(linear sweep voltammetry,LSV)去量測氧化裂解電位(decomposition voltage),並組成半電池,作充放電測試
    實驗結果顯示雙離子系統符合VTF方程式,其鋰離子移動方式,主要是靠PEO高分子鏈的擾動所造成;而單離子系統符合Arrhenius 方程式,其鋰離子主要是靠傳統離子晶格跳躍(activated ion hopping)理論去移動。同時也針對方程式畫出的趨勢圖結果,計算出活化能,結果顯示活化能跟離子導電度呈現反比關係。
    對於單、雙系統,鋰離子遷移數量測結果,與離子導電度呈現正比關係。根據雙離子系統和單離子系統,並使用不同鹽類添加方式(鹽類溶解在電解液中),所設計出的三份分系統PEO/LiClO4/LiPF6,EO/Li莫爾比等於24/1,其氧化裂解電位約為4.5 V(vs.Li/Li+),在0.1C速度下充放電,電容值表現為150 mAhg-1

    Two blend- baed polymer electrolytes system composed of poly(ethylene oxide) (PEO), lithium perchlorate (LiClO4) or poly(4-Styrene sulfonate) lithium salt (PSS-Li), with and without electrolytic solution were investigated.
    The structure and electrochemical properties of the electrolytes thus obt- ained were systematically investigated by a variety of techniques including dif- ferential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy(FTIR), AC-impedance, lithium ion transference number, linear sweep voltammetry (LSV) and charge-discharge measu reements.
    The temperature dependence of the conductivity was fit by the Vogel-Ta mman-Fulcher(VTF) equation or Arrhenus equation, indicating that the mechanism for ion conduction are dependent upon the high-amplitude segmental motion of the polymer host or traditional ion hopping theory.
    The conductivities and the mechanism of polymer electrolytes system were affected by the motion type of lithium ion.
    The experiment’s results have showed that the PEO/LiClO4 double-ion polymer electrolyte system follow the VTF equation and the PEO/PSS-Li single-ion polymer electrolyte system was fit by Arrhenus equation.And from the results of a parameter fit to the equation about lithium ion motion mechanism in which activation energy (Ea) was calculated. The Ea data with ionic conductivity were presented with an inverse relationship.
    For dual and single ion system, the lithium ion transference number results with ionic conductivity were positively correlated. According to double-ion systems and single-ion systems, to use different ways to add lithium salt (salt dissolved in the electrolytic solution) and to desight new polymer electrolyte system PEO/LiClO4/LiPF6, EO/Li molar ratio of 24/1. The oxidation potential of new polymer electrolyte system is approximately 4.5 V (vs.Li/Li+), and the data of charge and discharge test, the final capacitor value is up to 150 mAhg-1 at a scan rate of 0.1C.

    中文摘要 I Abstract II 誌謝 IV 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2研究動機與目的 4 第二章 文獻回顧 5 2-1鋰離子電池之工作原理和特點 5 2-2高分子電解質 7 2-2-1全固態高分子電解質 7 2-2-1.1改變高分子主體的結構 8 2-2-1.2從聚合物的添加劑著手 9 2-2-1.3改變在高分子中添加的鹽類跟鹽類濃度高低 10 2-2-2膠態高分子電解質 10 2-2-3無機複合高分子電解質 13 2-3 PEO系列高分子電解質簡介 13 2-4單離子跟雙離子高分子電解質系統比較 17 2-5高分子電解質的導電傳導機制 19 2-5-1固態高分子電解質之機制 19 2-5-2膠態高分子電解質之機制 22 2-6交流阻抗分析(AC-Impedance)探討 24 2-6-1基礎電路簡介 24 2-6-2交流阻抗分析 26 第三章 實驗內容 30 3-1藥品 30 3-2儀器設備 32 3-3實驗步驟 33 3-3-1鋰離子傳導薄膜之製備 33 3-3-1.1 PSS-Li的製備 33 3-3-1.2固態高分子電解質的製作 35 3-3-1.3膠態高分子電解質的製作 39 3-3-2鋰離子傳導薄膜之鑑定 40 3-3-2.1紅外線光譜分析(FT-IR) 40 3-3-2.2感應耦合電漿質譜分析(ICP-MX) 40 3-3-2.3離子導電度(Ionic conductivity) 40 3-3-2.4鋰離子遷移數分析 41 3-3-2.5熱轉移性質(Thermal transition property) (DSC) 42 3-3-2.6高分子電解質膜熱重分析 42 3-3-2.7電解質線性掃描伏安法(linear sweep voltammetry, LSV) 43 3-3-2.8半電池組裝測試 43 第四章 結果與討論 45 4-1高分子電解質之製作 45 4-1-1 IR分析 46 4-1-2 ICP-MX分析 48 4-2高分子電解質之性質探討 49 4-2-1不同類型鋰鹽之離子導電度(Gel與Solid)研究 49 4-2-2 離子導電度與活化能之關係 55 4-2-3 鋰離子遷移數測試 63 4-2-4微分掃瞄熱分析儀(DSC) 72 4-2-5熱穩定度測試 74 4-2-5.1 PSS-Li的加入,對PEO/LiClO4系統的影響 74 4-2-5.2相同EO/Li 比例下,不同系統間比較 75 4-2-6 LSV分析 78 4-2-7充放電測試 81 第五章 結論 89 參考文獻 90

    [1] Nishi, Y. J. Power Sources 2001, 100 (1-2), 101-106.
    [2] Zaghib, K.;Charest, P.;Guerfi, A.;Shim, J.;Perrier, M.;Striebel, K. J. Power Sources 2004, 134 (1), 124-129.
    [3] Takamura, T. Solid State Ionics 2002, 152, 19-34.
    [4] Tanaka, T.;Ohta, K.;Arai, N. J. Power Sources 2001, 97-8, 2-6.
    [5] 黃可龍;王兆翔;劉素琴 鋰離子電池原理與技術, 2010.
    [6] Tarascon, J. M.;Armand, M. Nature 2001, 414 (6861), 359-367.
    [7] Etacheri, V.;Marom, R.;Elazari, R.;Salitra, G.;Aurbach, D. Energ Environ. Sci. 2011, 4 (9), 3243-3262.
    [8] Guyomard, D.;Tarascon, J. M. Adv. Mater. 1994, 6 (5), 408-412.
    [9] Fenton, D. E.;Parker, J. M.;Wright, P. V. Polymer 1973, 14 (11), 589-589.
    [10] Motonobu, K. Batteries of the Future: Thin and Bendable, Nikkei Elect ronics Asia. 2006/07.
    [11] Fenton, D. E.; Parker, J. M.; Wright, P. V. Polymer 1973,14, 589.
    [12] Ahmad, S. Ionics 2009, 15 (3), 309-321.
    [13] Angell, C. A.;Liu, C.;Sanchez, E. Nature 1993, 362 (6416), 137-139.
    [14] Hu, Q. C.;Osswald, S.;Daniel, R.;Zhu, Y.;Wesel, S.;Ortiz, L.;Sadoway, D. R. J. Power Sources 2011, 196 (13), 5604-5610.
    [15] Wang, C. X.;Sakai, T.;Watanabe, O.;Hirahara, K.;Nakanishi, T. J. Electrochem. Soc. 2003, 150 (9), A1166-A1170.
    [16] Nagaoka, K.;Naruse, H.;Shinohara, I.;Watanabe, M. J. Polym. Sci. : Polym. Lett. 1984, 22 (12), 659-663.
    [17] Watanabe, M.;Oohashi, S.;Sanui, K.;Ogata, N.;Kobayashi, T.;Ohtaki, Z. Macromolecules 1985, 18 (10), 1945-1950.
    [18] Ryoo, H. J.;Kim, H. T.;Lee, Y. G.;Park, J. K.;Moon, S. I. J. Solid State Electr. 1998, 3 (1), 1-6.
    [19] Bohnke, O.;Rousselot, C.;Gillet, P. A.;Truche, C. J Electrochem. Soc. 1992, 139 (7), 1862-1865.
    [20] Matsuda, Y.;Morita, M.;Tsutsumi, H. J. Power Sources 1993, 44(1-3),439- 443.
    [21] Morita, M.;Fukumasa, T.;Motoda, M.;Tsutsumi, H.;Matsuda, Y. J. Electrochem. Soc. 1990, 137 (11), 3401-3404.
    [22] Dias, F. B.;Plomp, L.;Veldhuis, J. B. J. J. Power Sources 2000, 88 (2),169-191.
    [23] Wright, P. V. Electrochim. Acta 1998, 43 (10-11), 1137-1143.
    [24] Anantha, P. S.;Hariharan, K. Solid State Ionics 2005, 176 (1-2), 155-162.
    [25] Kang, Y. K.;Cheong, K.;Noh, K. A.;Lee, C.;Seung, D. Y. J. Power Sources 2003, 119, 432-437.
    [26] Cha, E. H.;Macfarlane, D. R.;Forsyth, M.;Lee, C. W. Electrochim. Acta 2004, 50 (2-3), 335-338.
    [27] Watanabe, M.;Kanba, M.;Matsuda, H.;Tsunemi, K.;Mizoguchi, K.; Tsuch ida, E.;Shinohara, I. Macromol. Rapid Commun. 1981, 2 (12), 741-744.
    [28] Choe, H. S.;Carroll, B. G.;Pasquariello, D. M.;Abraham, K. M. Chem. Mater. 1997, 9 (1), 369-379.
    [29] Tarascon, J. M.;Gozdz, A. S.;Schmutz, C.;Shokoohi, F.;Warren, P. C. Solid State Ionics 1996, 86-8, 49-54.
    [30] Gozdz, A. S.;Schmutz,C. N.; Tarascon, J. M.;Warren, P. C. U.S.Patent (1995) 5,418,091.
    [31] Gozdz, A. S.;Schmutz,C. N.; Tarascon, J. M.;Warren, P. C. U.S.Patent (1995) 5,456,000.
    [32] Sukeshini, A. M.;Nishimoto, A.;Watanabe, M. Solid State Ionics 1996, 86-8, 385-393.
    [33] Iijima,T.;Toyoguchi,Y.; Eda, N. Denki Kagaku 1985, 53, 619,
    [34] Appetecchi, G. B.;Croce, F.;Scrosati, B. Electrochim. Acta 1995, 40 (8), 991-997.
    [35] Bohnke, O.;Frand, G.;Rezrazi, M.;Rousselot, C.;Truche, C. Solid State Ionics 1993, 66 (1-2), 97-104.
    [36] Rhoo, H. J.;Kim, H. T.;Park, J. K.;Hwang, T. S. Electrochim. Acta 1997, 42 (10), 1571-1579.
    [37] Stephan, A. M.;Thirunakaran, R.;Renganathan, N. G.;Sundaram, V.;Pitch umani, S.;Muniyandi, N.;Gangadharan, R.;Ramamoorthy, P. J. Power Sources 1999, 81, 752-758.
    [38] Stephan, A. M.;Renganathan, N. G.;Kumar, T. P.;Thirunakaran, R.;Pit ch umani, S.;Shrisudersan, J.;Muniyandi, N. Solid State Ionics 2000, 130 (1-2), 123-132.
    [39] Stephan, A. M.;Kumar, T. P.;Renganathan, N. G.;Pitchumani, S.;Thirunak aran, R.;Muniyandi, N. J. Power Sources 2000, 89 (1), 80-87.
    [40] Skaarup, S.;West, K.;Zachau-Christiansen, B.;Popall, M.;Kappel, J.;Kron, J.;Eichinger, G.;Semrau, G. Electrochim. Acta 1998, 43 (10-11), 1589-1592.
    [41] Armand,M. B.; Chabagno,J. M. Fast Ion Transport in Solids, Eds. P. Vash ishta, North Holland, New York, 1979
    [42] Papke, B. L.;Ratner, M. A.;Shriver, D. F. J. Electrochem. Soc. 1982, 129 (8), 1694-1701.
    [43] Gray, F. M. Solid Polymer Electrolytes, VCH Pubishers, New York, 1991.

    [44] Lee, S. M.;Chen, C. Y.;Wang, C. C. Electrochim. Acta 2004, 49 (27), 4907- 4913.
    [45] Lee, S. M.;Chen, C. Y.;Wang, C. C. Electrochim. Acta 2003, 48 (24), 3699- 3708.
    [46] Wang, H. L.;Kao, H. M.;Digar, M.;Wen, T. C. Macromolecules 2001, 34 (3), 529-537.
    [47] Wu, C. G.;Wu, C. H.;Lu, M. I.;Chuang, H. J. J. Appl. Polym. Sci. 2006, 99 (4), 1530-1540.
    [48] Gnanaraj, J. S.;Karekar, R. N.;Skaria, S.;Rajan, C. R.;Ponrathnam, S. Polymer 1997, 38 (14), 3709-3712.
    [49] Qi, L.;Lin, Y. Q.;Jing, X. B.;Wang, F. S. Solid State Ionics 2001, 139 (3-4), 293-301.
    [50] Kuo, P. L.;Liang, W. J.;Lin, C. L. Macromol. Chem. Phys. 2002, 203 (1), 230-237.
    [51] Chiang, C. K.;Davis, G. T.;Harding, C. A.;Takahashi, T. Macromolecules 1985, 18 (4), 825-827.
    [52] Watanabe, M.;Rikukawa, M.;Sanui, K.;Ogata, N. Macromolecules 1986, 19 (1), 188-192.
    [53] Leveque, M.;Lenest, J. F.;Gandini, A.;Cheradame, H. J. Power Sources 1985, 14 (1-3), 27-30.
    [54] Spiro,M. in Techniques of Chemistry, Vol. 1, Pt. IIA (A.Weissberger and B.W. Rossiter, Eds.), Wiley, New York (1970)
    [55] Bruce, P. G.;Hardgrave, M. T.;Vincent, C. A. Solid State Ionics 1992, 53, 1087-1094.
    [56] Gorecki, W.;Jeannin, M.;Belorizky, E.;Roux, C.;Armand, M. J. Phys -Condens Mat. 1995, 7 (34), 6823-6832.
    [57] Sun, X. G.;Reeder, C. L.;Kerr, J. B. Macromolecules 2004, 37 (6), 2219 - 2227.
    [58] Mehta, M. A.;Fujinami, T.;Inoue, S.;Matsushita, K.;Miwa, T.;Inoue, T. Electrochim. Acta 2000, 45 (8-9), 1175-1180.
    [59] Sun, X. G.;Angell, C. A. Electrochim. Acta 2001, 46 (10-11), 1467-1473.
    [60] Xu, W.;Sun, X. G.;Angell, C. A. Electrochim. Acta 2003, 48 (14-16), 2255 -2266.
    [61] Chakrabarti, A.;Filler, R.;Mandal, B. K. J. Solid State Electrochem. 2008, 12 (3), 269-272.
    [62] Kaneko, F.;Wada, S.;Nakayama, M.;Wakihara, M.;Koki, J.;Kuroki, S. Adv. Funct. Mater. 2009, 19 (6), 918-925.
    [63] Mehta, M. A.;Fujinami, T.;Inoue, T. J. Power Sources 1999, 81, 724-728.
    [64] Onishi, K.;Matsumoto, M.;Nakacho, Y.;Shigehara, K. Chem. Mater. 1996, 8 (2), 469-472.
    [65] Fujinami, T.;Tokimune, A.;Mehta, M. A.;Shriver, D. F.;Rawsky, G. C. Chem. Mater. 1997, 9 (10), 2236-2239.
    [66] Xu, W.;Angell, C. A. Solid State Ionics 2002, 147 (3-4), 295-301.
    [67] Benrabah, D.;Sylla, S.;Alloin, F.;Sanchez, J. Y.;Armand, M. Electrochim. Acta 1995, 40 (13-14), 2259-2264.
    [68] Bannister, D. J.;Davies, G. R.;Ward, I. M.;Mcintyre, J. E. Polymer 1984, 25 (9), 1291-1296.
    [69] Kobayashi, N.;Uchiyama, M.;Tsuchida, E. Solid State Ionics 1985, 17 (4), 307-311.
    [70] Mullerplathe, F.;Vangunsteren, W. F. J. Chem. Phys. 1995, 103 (11), 4745 - 4756.
    [71] Ratner, M. A.;Shriver, D. F. Chem. Rev. 1988, 88 (1), 109-124.
    [72] Watanabe, M.;Ogata, N. Brit. Polym. J. 1988, 20 (3), 181-192.
    [73] Huang, B. Y.;Wang, Z. X.;Li, G. B.;Huang, H.;Xue, R. J.;Chen, L. Q.; Wang, F. S. Solid State Ionics 1996, 85 (1-4), 79-84.
    [74] Yang, C. R.;Perng, J. T.;Wang, Y. Y.;Wan, C. C. J. Power Sources 1996, 62 (1), 89-93.
    [75] Allcock, H. R.;Olmeijer, D. L. Macromolecules 1998, 31 (23), 8036-8046.
    [76] Souquet, J. L.;Duclot, M.;Levy, M. Solid State Ionics 1996, 85 (1-4), 149 - 157.
    [77] Meyer, W. H. Adv. Mater. 1998, 10 (6), 439-448
    [78]. Armand, M. B; Chabagno,J. M.; Duclot ,M. “Second International meet ing Solid Electrolyte Eextend Abstracts”, St. Andrews Ecose 1978 / 09, p20~ p22.
    [79] Abraham, K. M.;Alamgir, M. Solid State Ionics 1994, 70, 20-26.
    [80] Croce, F.;Brown, S. D.;Greenbaum, S. G.;Slane, S. M.;Salomon, M. Chem. Mater. 1993, 5 (9), 1268-1272.
    [81] CMS300 Electrochemical System Operator’s Manual, Gamery Instrum ents, Inc., USA.,1993
    [82] Allen ,J. B.;Larry, R. F.“Electrochemical Methods”,John and Sons,Chap.9, 1980,.New Year 316.
    [83] Sorensen, P. R.;Jacobsen, T. Electrochim. Acta 1982, 27 (12), 1671-1675.
    [84] Yang, J. C.;Jablonsky, M. J.;Mays, J. W. Polymer 2002, 43 (19), 5125- 5132.
    [85] Li, Z. H.;Ju, L.;Li, D. C.;Zheng, J. W.;Xu, Y. H. Ionics 2012, 18 (7), 673- 677.
    [86] Battisti, D.;Nazri, G. A.;Klassen, B.;Aroca, R. J. Phys. Chem. 1993, 97 (22), 5826-5830.
    [87] Bishop, A. G.;MacFarlane, D. R.;McNaughton, D.;Forsyth, M. J. Phys. Chem. 1996, 100 (6), 2237-2243.
    [88] Fujinami, T.;Buzoujima, Y. J. Power Sources 2003, 119, 438-441.
    [89] Zugmann, S.;Fleischmann, M.;Amereller, M.;Gschwind, R. M.;Wiemhofer, H. D.;Gores, H. J. Electrochim. Acta 2011, 56 (11), 3926-3933.
    [90] Olsen, I. I.;Koksbang, R.;Skou, E. Electrochim. Acta 1995, 40 (11), 170-1706.

    下載圖示 校內:2018-09-02公開
    校外:2018-09-02公開
    QR CODE