| 研究生: |
蘇俊銘 Su, Chun-Ming |
|---|---|
| 論文名稱: |
聚氧化乙烯/過氯酸鋰/聚(4-苯乙烯磺酸)鋰鹽混摻型高分子電解質之離子導電機制探討 Mechanisms of Ionic Conductivity on Poly(ethylene oxide)/Lithium Perchlorate/Poly(4-styrenesulfonic acid) lithium salt blend polymer electrolytes |
| 指導教授: |
侯聖澍
Hou, Sheng-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 聚(4-苯乙烯磺酸)鋰鹽 、離子導電機制 、高分子電解質 |
| 外文關鍵詞: | Poly(4-styrenesulfonate) lithium salt, ion conduction mechanism, polymer electrolyte |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由兩種混摻型高分子電解質去探討離子導電機制,其一是(PEO/LiClO4)雙離子系統,另一是(PEO/PSS-Li)單離子系統,分別在不同溫度下使用AC-Impendance,量測出離子導電度,並對離子導電度跟溫度關係用Arrhenius方程式以及Volgel-Tamman-Fulcher(VTF)方程式去做趨勢圖。鋰離子二次電池中的電解質,鋰離子移動方式,會對離子導電度大小及離子導電機制,或是其他電化學性質有所影響。
本研究也量測兩高分子電解質系統鋰離子遷移數,去了解鋰離子在離子導電度中的貢獻程度,還有使用DSC、TGA量測去了解材料的熱性質。最後使用線性掃瞄伏安法(linear sweep voltammetry,LSV)去量測氧化裂解電位(decomposition voltage),並組成半電池,作充放電測試
實驗結果顯示雙離子系統符合VTF方程式,其鋰離子移動方式,主要是靠PEO高分子鏈的擾動所造成;而單離子系統符合Arrhenius 方程式,其鋰離子主要是靠傳統離子晶格跳躍(activated ion hopping)理論去移動。同時也針對方程式畫出的趨勢圖結果,計算出活化能,結果顯示活化能跟離子導電度呈現反比關係。
對於單、雙系統,鋰離子遷移數量測結果,與離子導電度呈現正比關係。根據雙離子系統和單離子系統,並使用不同鹽類添加方式(鹽類溶解在電解液中),所設計出的三份分系統PEO/LiClO4/LiPF6,EO/Li莫爾比等於24/1,其氧化裂解電位約為4.5 V(vs.Li/Li+),在0.1C速度下充放電,電容值表現為150 mAhg-1
Two blend- baed polymer electrolytes system composed of poly(ethylene oxide) (PEO), lithium perchlorate (LiClO4) or poly(4-Styrene sulfonate) lithium salt (PSS-Li), with and without electrolytic solution were investigated.
The structure and electrochemical properties of the electrolytes thus obt- ained were systematically investigated by a variety of techniques including dif- ferential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy(FTIR), AC-impedance, lithium ion transference number, linear sweep voltammetry (LSV) and charge-discharge measu reements.
The temperature dependence of the conductivity was fit by the Vogel-Ta mman-Fulcher(VTF) equation or Arrhenus equation, indicating that the mechanism for ion conduction are dependent upon the high-amplitude segmental motion of the polymer host or traditional ion hopping theory.
The conductivities and the mechanism of polymer electrolytes system were affected by the motion type of lithium ion.
The experiment’s results have showed that the PEO/LiClO4 double-ion polymer electrolyte system follow the VTF equation and the PEO/PSS-Li single-ion polymer electrolyte system was fit by Arrhenus equation.And from the results of a parameter fit to the equation about lithium ion motion mechanism in which activation energy (Ea) was calculated. The Ea data with ionic conductivity were presented with an inverse relationship.
For dual and single ion system, the lithium ion transference number results with ionic conductivity were positively correlated. According to double-ion systems and single-ion systems, to use different ways to add lithium salt (salt dissolved in the electrolytic solution) and to desight new polymer electrolyte system PEO/LiClO4/LiPF6, EO/Li molar ratio of 24/1. The oxidation potential of new polymer electrolyte system is approximately 4.5 V (vs.Li/Li+), and the data of charge and discharge test, the final capacitor value is up to 150 mAhg-1 at a scan rate of 0.1C.
[1] Nishi, Y. J. Power Sources 2001, 100 (1-2), 101-106.
[2] Zaghib, K.;Charest, P.;Guerfi, A.;Shim, J.;Perrier, M.;Striebel, K. J. Power Sources 2004, 134 (1), 124-129.
[3] Takamura, T. Solid State Ionics 2002, 152, 19-34.
[4] Tanaka, T.;Ohta, K.;Arai, N. J. Power Sources 2001, 97-8, 2-6.
[5] 黃可龍;王兆翔;劉素琴 鋰離子電池原理與技術, 2010.
[6] Tarascon, J. M.;Armand, M. Nature 2001, 414 (6861), 359-367.
[7] Etacheri, V.;Marom, R.;Elazari, R.;Salitra, G.;Aurbach, D. Energ Environ. Sci. 2011, 4 (9), 3243-3262.
[8] Guyomard, D.;Tarascon, J. M. Adv. Mater. 1994, 6 (5), 408-412.
[9] Fenton, D. E.;Parker, J. M.;Wright, P. V. Polymer 1973, 14 (11), 589-589.
[10] Motonobu, K. Batteries of the Future: Thin and Bendable, Nikkei Elect ronics Asia. 2006/07.
[11] Fenton, D. E.; Parker, J. M.; Wright, P. V. Polymer 1973,14, 589.
[12] Ahmad, S. Ionics 2009, 15 (3), 309-321.
[13] Angell, C. A.;Liu, C.;Sanchez, E. Nature 1993, 362 (6416), 137-139.
[14] Hu, Q. C.;Osswald, S.;Daniel, R.;Zhu, Y.;Wesel, S.;Ortiz, L.;Sadoway, D. R. J. Power Sources 2011, 196 (13), 5604-5610.
[15] Wang, C. X.;Sakai, T.;Watanabe, O.;Hirahara, K.;Nakanishi, T. J. Electrochem. Soc. 2003, 150 (9), A1166-A1170.
[16] Nagaoka, K.;Naruse, H.;Shinohara, I.;Watanabe, M. J. Polym. Sci. : Polym. Lett. 1984, 22 (12), 659-663.
[17] Watanabe, M.;Oohashi, S.;Sanui, K.;Ogata, N.;Kobayashi, T.;Ohtaki, Z. Macromolecules 1985, 18 (10), 1945-1950.
[18] Ryoo, H. J.;Kim, H. T.;Lee, Y. G.;Park, J. K.;Moon, S. I. J. Solid State Electr. 1998, 3 (1), 1-6.
[19] Bohnke, O.;Rousselot, C.;Gillet, P. A.;Truche, C. J Electrochem. Soc. 1992, 139 (7), 1862-1865.
[20] Matsuda, Y.;Morita, M.;Tsutsumi, H. J. Power Sources 1993, 44(1-3),439- 443.
[21] Morita, M.;Fukumasa, T.;Motoda, M.;Tsutsumi, H.;Matsuda, Y. J. Electrochem. Soc. 1990, 137 (11), 3401-3404.
[22] Dias, F. B.;Plomp, L.;Veldhuis, J. B. J. J. Power Sources 2000, 88 (2),169-191.
[23] Wright, P. V. Electrochim. Acta 1998, 43 (10-11), 1137-1143.
[24] Anantha, P. S.;Hariharan, K. Solid State Ionics 2005, 176 (1-2), 155-162.
[25] Kang, Y. K.;Cheong, K.;Noh, K. A.;Lee, C.;Seung, D. Y. J. Power Sources 2003, 119, 432-437.
[26] Cha, E. H.;Macfarlane, D. R.;Forsyth, M.;Lee, C. W. Electrochim. Acta 2004, 50 (2-3), 335-338.
[27] Watanabe, M.;Kanba, M.;Matsuda, H.;Tsunemi, K.;Mizoguchi, K.; Tsuch ida, E.;Shinohara, I. Macromol. Rapid Commun. 1981, 2 (12), 741-744.
[28] Choe, H. S.;Carroll, B. G.;Pasquariello, D. M.;Abraham, K. M. Chem. Mater. 1997, 9 (1), 369-379.
[29] Tarascon, J. M.;Gozdz, A. S.;Schmutz, C.;Shokoohi, F.;Warren, P. C. Solid State Ionics 1996, 86-8, 49-54.
[30] Gozdz, A. S.;Schmutz,C. N.; Tarascon, J. M.;Warren, P. C. U.S.Patent (1995) 5,418,091.
[31] Gozdz, A. S.;Schmutz,C. N.; Tarascon, J. M.;Warren, P. C. U.S.Patent (1995) 5,456,000.
[32] Sukeshini, A. M.;Nishimoto, A.;Watanabe, M. Solid State Ionics 1996, 86-8, 385-393.
[33] Iijima,T.;Toyoguchi,Y.; Eda, N. Denki Kagaku 1985, 53, 619,
[34] Appetecchi, G. B.;Croce, F.;Scrosati, B. Electrochim. Acta 1995, 40 (8), 991-997.
[35] Bohnke, O.;Frand, G.;Rezrazi, M.;Rousselot, C.;Truche, C. Solid State Ionics 1993, 66 (1-2), 97-104.
[36] Rhoo, H. J.;Kim, H. T.;Park, J. K.;Hwang, T. S. Electrochim. Acta 1997, 42 (10), 1571-1579.
[37] Stephan, A. M.;Thirunakaran, R.;Renganathan, N. G.;Sundaram, V.;Pitch umani, S.;Muniyandi, N.;Gangadharan, R.;Ramamoorthy, P. J. Power Sources 1999, 81, 752-758.
[38] Stephan, A. M.;Renganathan, N. G.;Kumar, T. P.;Thirunakaran, R.;Pit ch umani, S.;Shrisudersan, J.;Muniyandi, N. Solid State Ionics 2000, 130 (1-2), 123-132.
[39] Stephan, A. M.;Kumar, T. P.;Renganathan, N. G.;Pitchumani, S.;Thirunak aran, R.;Muniyandi, N. J. Power Sources 2000, 89 (1), 80-87.
[40] Skaarup, S.;West, K.;Zachau-Christiansen, B.;Popall, M.;Kappel, J.;Kron, J.;Eichinger, G.;Semrau, G. Electrochim. Acta 1998, 43 (10-11), 1589-1592.
[41] Armand,M. B.; Chabagno,J. M. Fast Ion Transport in Solids, Eds. P. Vash ishta, North Holland, New York, 1979
[42] Papke, B. L.;Ratner, M. A.;Shriver, D. F. J. Electrochem. Soc. 1982, 129 (8), 1694-1701.
[43] Gray, F. M. Solid Polymer Electrolytes, VCH Pubishers, New York, 1991.
[44] Lee, S. M.;Chen, C. Y.;Wang, C. C. Electrochim. Acta 2004, 49 (27), 4907- 4913.
[45] Lee, S. M.;Chen, C. Y.;Wang, C. C. Electrochim. Acta 2003, 48 (24), 3699- 3708.
[46] Wang, H. L.;Kao, H. M.;Digar, M.;Wen, T. C. Macromolecules 2001, 34 (3), 529-537.
[47] Wu, C. G.;Wu, C. H.;Lu, M. I.;Chuang, H. J. J. Appl. Polym. Sci. 2006, 99 (4), 1530-1540.
[48] Gnanaraj, J. S.;Karekar, R. N.;Skaria, S.;Rajan, C. R.;Ponrathnam, S. Polymer 1997, 38 (14), 3709-3712.
[49] Qi, L.;Lin, Y. Q.;Jing, X. B.;Wang, F. S. Solid State Ionics 2001, 139 (3-4), 293-301.
[50] Kuo, P. L.;Liang, W. J.;Lin, C. L. Macromol. Chem. Phys. 2002, 203 (1), 230-237.
[51] Chiang, C. K.;Davis, G. T.;Harding, C. A.;Takahashi, T. Macromolecules 1985, 18 (4), 825-827.
[52] Watanabe, M.;Rikukawa, M.;Sanui, K.;Ogata, N. Macromolecules 1986, 19 (1), 188-192.
[53] Leveque, M.;Lenest, J. F.;Gandini, A.;Cheradame, H. J. Power Sources 1985, 14 (1-3), 27-30.
[54] Spiro,M. in Techniques of Chemistry, Vol. 1, Pt. IIA (A.Weissberger and B.W. Rossiter, Eds.), Wiley, New York (1970)
[55] Bruce, P. G.;Hardgrave, M. T.;Vincent, C. A. Solid State Ionics 1992, 53, 1087-1094.
[56] Gorecki, W.;Jeannin, M.;Belorizky, E.;Roux, C.;Armand, M. J. Phys -Condens Mat. 1995, 7 (34), 6823-6832.
[57] Sun, X. G.;Reeder, C. L.;Kerr, J. B. Macromolecules 2004, 37 (6), 2219 - 2227.
[58] Mehta, M. A.;Fujinami, T.;Inoue, S.;Matsushita, K.;Miwa, T.;Inoue, T. Electrochim. Acta 2000, 45 (8-9), 1175-1180.
[59] Sun, X. G.;Angell, C. A. Electrochim. Acta 2001, 46 (10-11), 1467-1473.
[60] Xu, W.;Sun, X. G.;Angell, C. A. Electrochim. Acta 2003, 48 (14-16), 2255 -2266.
[61] Chakrabarti, A.;Filler, R.;Mandal, B. K. J. Solid State Electrochem. 2008, 12 (3), 269-272.
[62] Kaneko, F.;Wada, S.;Nakayama, M.;Wakihara, M.;Koki, J.;Kuroki, S. Adv. Funct. Mater. 2009, 19 (6), 918-925.
[63] Mehta, M. A.;Fujinami, T.;Inoue, T. J. Power Sources 1999, 81, 724-728.
[64] Onishi, K.;Matsumoto, M.;Nakacho, Y.;Shigehara, K. Chem. Mater. 1996, 8 (2), 469-472.
[65] Fujinami, T.;Tokimune, A.;Mehta, M. A.;Shriver, D. F.;Rawsky, G. C. Chem. Mater. 1997, 9 (10), 2236-2239.
[66] Xu, W.;Angell, C. A. Solid State Ionics 2002, 147 (3-4), 295-301.
[67] Benrabah, D.;Sylla, S.;Alloin, F.;Sanchez, J. Y.;Armand, M. Electrochim. Acta 1995, 40 (13-14), 2259-2264.
[68] Bannister, D. J.;Davies, G. R.;Ward, I. M.;Mcintyre, J. E. Polymer 1984, 25 (9), 1291-1296.
[69] Kobayashi, N.;Uchiyama, M.;Tsuchida, E. Solid State Ionics 1985, 17 (4), 307-311.
[70] Mullerplathe, F.;Vangunsteren, W. F. J. Chem. Phys. 1995, 103 (11), 4745 - 4756.
[71] Ratner, M. A.;Shriver, D. F. Chem. Rev. 1988, 88 (1), 109-124.
[72] Watanabe, M.;Ogata, N. Brit. Polym. J. 1988, 20 (3), 181-192.
[73] Huang, B. Y.;Wang, Z. X.;Li, G. B.;Huang, H.;Xue, R. J.;Chen, L. Q.; Wang, F. S. Solid State Ionics 1996, 85 (1-4), 79-84.
[74] Yang, C. R.;Perng, J. T.;Wang, Y. Y.;Wan, C. C. J. Power Sources 1996, 62 (1), 89-93.
[75] Allcock, H. R.;Olmeijer, D. L. Macromolecules 1998, 31 (23), 8036-8046.
[76] Souquet, J. L.;Duclot, M.;Levy, M. Solid State Ionics 1996, 85 (1-4), 149 - 157.
[77] Meyer, W. H. Adv. Mater. 1998, 10 (6), 439-448
[78]. Armand, M. B; Chabagno,J. M.; Duclot ,M. “Second International meet ing Solid Electrolyte Eextend Abstracts”, St. Andrews Ecose 1978 / 09, p20~ p22.
[79] Abraham, K. M.;Alamgir, M. Solid State Ionics 1994, 70, 20-26.
[80] Croce, F.;Brown, S. D.;Greenbaum, S. G.;Slane, S. M.;Salomon, M. Chem. Mater. 1993, 5 (9), 1268-1272.
[81] CMS300 Electrochemical System Operator’s Manual, Gamery Instrum ents, Inc., USA.,1993
[82] Allen ,J. B.;Larry, R. F.“Electrochemical Methods”,John and Sons,Chap.9, 1980,.New Year 316.
[83] Sorensen, P. R.;Jacobsen, T. Electrochim. Acta 1982, 27 (12), 1671-1675.
[84] Yang, J. C.;Jablonsky, M. J.;Mays, J. W. Polymer 2002, 43 (19), 5125- 5132.
[85] Li, Z. H.;Ju, L.;Li, D. C.;Zheng, J. W.;Xu, Y. H. Ionics 2012, 18 (7), 673- 677.
[86] Battisti, D.;Nazri, G. A.;Klassen, B.;Aroca, R. J. Phys. Chem. 1993, 97 (22), 5826-5830.
[87] Bishop, A. G.;MacFarlane, D. R.;McNaughton, D.;Forsyth, M. J. Phys. Chem. 1996, 100 (6), 2237-2243.
[88] Fujinami, T.;Buzoujima, Y. J. Power Sources 2003, 119, 438-441.
[89] Zugmann, S.;Fleischmann, M.;Amereller, M.;Gschwind, R. M.;Wiemhofer, H. D.;Gores, H. J. Electrochim. Acta 2011, 56 (11), 3926-3933.
[90] Olsen, I. I.;Koksbang, R.;Skou, E. Electrochim. Acta 1995, 40 (11), 170-1706.