簡易檢索 / 詳目顯示

研究生: 羅炳蒝
Lo, Ping-Yuan
論文名稱: 光子系統中的非馬可夫動力學
Non-Markovian Dynamics in Photonic Systems
指導教授: 張為民
Zhang, Wei-Min
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 142
中文關鍵詞: 非馬可夫動力學光子晶體非平衡態統計物理
外文關鍵詞: Non-Markovian Dynamics, Photonic Crystals, Non-Equilibrium Statistical Physics
相關次數: 點閱:92下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用嚴格主方程來研究線性光子開放系統的非馬可夫動力學。透過嚴格主方程與非平衡態格林函數之間的連結,我們推導出描述該類量子開放系統非馬可夫動力學的解析解。在進一步分析我們所得到的解析結果後,我們依其動力學演化的特性將我們所研究的量子開放系統所有可能的動力學演化過程分成四類,並給出了由環境造成的量子退相干所導致的量子─古典變遷的物理圖像。在完整的討論並分析非馬可夫動力學的定性行為後,我們應用這套理論方法來研究光子晶體中的空腔系統在任意有限溫度下的動力學演化,並進一步探討光子晶體中的光子能隙結構對空腔動力學的影響。

    In this thesis, we present an analytic solution of non-Markovian dynamics for non-interacting photonic open quantum systems. We explore the non-Markovian dynamics of such open quantum systems through the solutions of the exact master equation, and carry out the detailed analysis of non-Markovian dynamics from these solutions. By further analyzing these analytic solutions, we capture the main features of the non-Markovian dynamics and categorize them into four different time evolution scenarios. This provides a general picture on the quantum-to-classical transition, which is caused by the environment-induced decoherence. After the comprehensive discussions about the qualitative behaviors of non-Markovian decoherence dynamics, we apply the theory to study the non-Markovian cavity dynamics in photonic crystals at finite temperature, and explicitly show the influence of the photonic band gap on the cavity photon field.

    1 Introduction 1 1.1 Open Quantum Systems and Non-Markovian Dynamics . . . . . . 1 1.2 Photonic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Theory of Non-Markovian Photon Dynamics 8 2.1 Exact Master Equation and Non-Equilibrium Green's Functions . 9 2.2 General Solution of the Exact Master Equation . . . . . . . . . . 13 2.3 Analytic Solution of Dissipation and Fluctuation Dynamics . . . 19 2.3.1 Dissipation Dynamics . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Fluctuation Dynamics . . . . . . . . . . . . . . . . . . . . 21 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Non-Markovian Complexity in the Quantum-to-Classical Transition 29 3.1 Non-Markovian complexity of QCT . . . . . . . . . . . . . . . . . 30 3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Demonstrations of the Quantum-to-Classical Transition . . . . . . 39 3.3.1 Schrodinger cat-like state . . . . . . . . . . . . . . . . . . . 41 3.3.2 Squeezed state . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 An Experimental Proposal for Measuring the Non-Markovian Memory E ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4 Non-Markovian Photon Dynamics in Photonic Crystals 57 4.1 Dissipation and dissipationless photon dynamics in photonic crystals 58 4.2 Thermal photon uctuations . . . . . . . . . . . . . . . . . . . . . 64 4.3 Breakdown of Bose-Einstein distribution through the time-evolution of photonic Fock states . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 Breakdown of Bose-Einstein distribution through the time-evolution of coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Conclusion and Future Perspectives 81 A Detailed Derivation of Identities Involving Multi-indices 84 A.1 Derivation of Eq. (2.16) . . . . . . . . . . . . . . . . . . . . . . . 84 A.2 Derivation of Eq. (2.19) . . . . . . . . . . . . . . . . . . . . . . . 86 A.3 Derivation of Eqs. (2.21) . . . . . . . . . . . . . . . . . . . . . . . 88 B Weak coupling limit of Eqs. (3.3)-(3.5) 90 B.1 Weak coupling limit of the dissipation process . . . . . . . . . . . 90 B.2 Weak coupling limit of uctuation correlation . . . . . . . . . . . 92 B.3 Weak coupling limit of the reduced density matrix . . . . . . . . . 94 C Analytic Solution of Particle Propagating Green's Function for Ohmic-type Spectral Density 96 D Analytic Solution of the Dissipation Green's Function for Cavity Coupled to Coupled-Resonantor-Optical-Waveguides (CROW) 102 D.1 Tight-Binding Model for CROW . . . . . . . . . . . . . . . . . . . 102 D.2 Analytic Solution of the Dissipation Dynamics . . . . . . . . . . . 104 E Time-evolution of Wigner distribution with arbitrary initial state 110 F Time-Evolution of Gaussian State 116 F.1 Reduced Density Matrix . . . . . . . . . . . . . . . . . . . . . . . 116 F.2 Wigner Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Bibliography 123

    [1] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems
    (Oxford University Press, New York, 2002).

    [2] U. Weiss, Quantum Dissipative Systems 3rd Ed. (World Scienti c, Singapore,
    2008).

    [3] R. Bulla, T. A. Costi, and T. Pruschke, "Numerical renormalization group
    method for quantum impurity systems," Rev. Mod. Phys. 80, 395-450
    (2008).

    [4] J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio, "Efficient simulation
    of strong system-environment interactions," Phys. Rev. Lett. 105, 050404
    (2010).

    [5] U. Schollwock, "The density-matrix renormalization group in the age of
    matrix product states," Ann. Phys. 326, 96 (2011).

    [6] J. Bon ca, S. A. Trugman, and I. Batisti c, "Holstein polaron," Phys. Rev.
    B 60, 1633-1642 (1999).

    [7] S. R. White, "Density matrix formulation for quantum renormalization
    groups," Phys. Rev. Lett. 69, 2863-2866 (1992).

    [8] S. R. White, "Strongly correlated electron systems and the density matrix
    renormalization group," Phys. Rep. 301, 187 (1998).

    [9] C. Zhang, E. Jeckelmann, and S. R. White, "Density matrix approach to
    local hilbert space reduction," Phys. Rev. Lett. 80, 2661{2664 (1998).

    [10] W. Pauli, Festschrift zum 60 Geburstag A. Sommerfeld , S.30 (1928).

    [11] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, "Completely positive
    dynamical semigroups of n?level systems," J. Math. Phys. 17, 821-825
    (1976).

    [12] G. Lindblad, "On the generators of quantum dynamical semigroups," Commun.
    Math. Phys. 48, 119-130.

    [13] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University
    press, Cambridge, 1997).

    [14] H. J. Carmichael, An Open Systems Approach to Quantum Optics, Lecture
    Notes in Physics (Springer-Verlag, Berlin, 1993).

    [15] R. Koslo , "Quantum thermodynamics: A dynamical viewpoint," Entropy
    15, 2100 (2013).

    [16] H. Spohn and J. L. Lebowitz, Irreversible Thermodynamics for Quantum
    Systems Weakly Coupled to Thermal Reservoirs (John Wiley & Sons, Inc.,
    2007).

    [17] H. Haken, "Cooperative phenomena in systems far from thermal equilibrium
    and in nonphysical systems," Rev. Mod. Phys. 47, 67-121 (1975).

    [18] H. Spohn, "Kinetic equations from hamiltonian dynamics: Markovian limits,"
    Rev. Mod. Phys. 52, 569-615 (1980).

    [19] A. Recati, P. O. Fedichev, W. Zwerger, J. von Delft, and P. Zoller, "Atomic
    quantum dots coupled to a reservoir of a super
    uid bose-einstein condensate,"
    Phys. Rev. Lett. 94, 040404 (2005).

    [20] D. Jaksch and P. Zoller, "The cold atom hubbard toolbox," Ann. Phys. 315,
    52 (2005).

    [21] M. Knap, D. A. Abanin, and E. Demler, "Dissipative dynamics of a driven
    quantum spin coupled to a bath of ultracold fermions," Phys. Rev. Lett.
    111, 265302 (2013).

    [22] D. Sokolovski and S. A. Gurvitz, "Unusual decoherence in qubit measurements
    with a bose-einstein condensate," Phys. Rev. A 79, 032106 (2009).

    [23] S. Groblacher, A. Trubarov, N. Prigge, G. D. Cole, M. Aspelmeyer, and
    J. Eisert, "Observation of non-markovian micromechanical brownian motion,"
    Nat. Commun. 6, 7606 (2015).

    [24] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, "Cavity optomechanics,"
    Rev. Mod. Phys. 86, 1391-1452 (2014).

    [25] S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, "Observation
    of strong coupling between a micromechanical resonator and an optical
    cavity field," Nature 460, 724 (2009).

    [26] T. J. Kippenberg and K. J. Vahala, "Cavity optomechanics: Back-action at
    the mesoscale," Science 321, 1172-1176 (2008).

    [27] T. Brandes, "Coherent and collective quantum optical effects in mesoscopic
    systems," Phys. Rep. 408, 315 (2005).

    [28] X. Zhao, W. Shi, L.-A. Wu, and T. Yu, "Fermionic stochastic schrodinger
    equation and master equation: An open-system model," Phys. Rev. A 86,
    032116 (2012).

    [29] M. W. Y. Tu and W. M. Zhang, "Non-markovian decoherence theory for a
    double-dot charge qubit," Phys. Rev. B 78, 235311 (2008).

    [30] J. Jin, M. W. Y. Tu, W. M. Zhang, and Y. J. Yan, "Non-equilibrium
    quantum theory for nanodevices based on the feynman-vernon in
    uence
    functional," New. J. Phys. 12, 083013 (2010).

    [31] M. W. Y. Tu, W. M. Zhang, and J. Jin, "Intrinsic coherence dynamics and
    phase localization in nanoscale aharonov-bohm interferometers," Phys. Rev.
    B 83, 115318 (2011).

    [32] M. W. Y. Tu, W. M. Zhang, and F. Nori, "Coherent control of double-dot
    molecules using aharonov-bohm magnetic
    flux," Phys. Rev. B 86, 195403
    (2012).

    [33] M. W. Y. Tu, W. M. Zhang, J. Jin, O. Entin-Wohlman, and A. Aharony,
    "Transient quantum transport in double-dot aharonov-bohm interferometers,"
    Phys. Rev. B 86, 115453 (2012).

    [34] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa,
    S. Tarucha, and L. P. Kouwenhoven, "Electron transport through double
    quantum dots," Rev. Mod. Phys. 75, 1{22 (2002).

    [35] J. P. Reithmaier, G. Se.
    k, A. Lo er, C. Hofmann, S. Kuhn, S. Reitzenstein,
    L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel,
    "Strong coupling in a single quantum dotvsemiconductor microcavity system,"
    Nature 432, 197 (2004).

    [36] S. Haroche and D. Kleppner, "Cavity quantum electrodynamics," Physics
    Today 42, 24 (1989).

    [37] H.Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, "Cavity quantum
    electrodynamics," Rep. Prog. Phys. 69, 1325 (2006).

    [38] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears,
    B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret,
    and R. J. Schoelkopf, "Observation of high coherence in josephson
    junction qubits measured in a three-dimensional circuit qed architecture,"
    Phys. Rev. Lett. 107, 240501 (2011).

    [39] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz,
    J. J. Garcia-Ripoll, D. Zueco, T. Hummer, E. Solano, A. Marx, and R. Gross,
    "Circuit quantum electrodynamics in the ultrastrong-coupling regime," Nat.
    Phys. 6, 772 (2010).

    [40] A. Blais, R.-S. Huang, A. Wallra , S. M. Girvin, and R. J. Schoelkopf,
    "Cavity quantum electrodynamics for superconducting electrical circuits: An
    architecture for quantum computation," Phys. Rev. A 69, 062320 (2004).

    [41] A. Wallra , D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer,
    S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single
    photon to a superconducting qubit using circuit quantum electrodynamics,"
    Nature 431, 162 (2004).

    [42] A. G. kofman, G. Kurizki, and B. Sherman, "Spontaneous and induced
    atomic decay in photonic band structures," J. Mod. Opt. 41, 353 (1994).

    [43] P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, "Fundamental
    quantum optics in structured reservoirs," Rep. Prog. Phys. 63, 455
    (2000).

    [44] S. John and J. Wang, "Quantum electrodynamics near a photonic band gap:
    Photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421
    (1990).

    [45] S. John and J. Wang, "Quantum optics of localized light in a photonic band
    gap," Phys. Rev. B 43, 12772{12789 (1991).

    [46] J. Prior, I. de Vega, A. W. Chin, S. F. Huelga, and M. B. Plenio, "Quantum
    dynamics in photonic crystals," Phys. Rev. A 87, 013428 (2013).

    [47] N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori,
    "Quantum biology," Nat. Phys. 9, 10 (2013).

    [48] E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D.
    Scholes, "Coherently wired light-harvesting in photosynthetic marine algae
    at ambient temperature," Nature 463, 644 (2009).

    [49] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and
    electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).

    [50] S. John, "Strong localization of photons in certain disordered dielectric
    superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).

    [51] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure:
    The face-centered-cubic case employing nonspherical atoms," Phys. Rev.
    Lett. 67, 2295-2298 (1991).

    [52] S. Noda and T. Baba, Roadmap on photonic crystals (Optoelectronic Industry
    and Technology Development Association (OITDA), Japan, 2003).

    [53] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic
    Crystals: Modeling the Flow of Light (Princeton, New York, 2008).

    [54] M. Notomi, "Manipulating light with strongly modulated photonic crystals,"
    Rep. Prog. Phys. 73, 096501 (2010).

    [55] K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili,
    and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep. 444,
    101 (2007).

    [56] S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by
    photonic crystals and nanocavities," Nat. Photon. 1, 449 (2007).

    [57] Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-q photonic nanocavity
    in a two-dimensional photonic crystal," Nature 425, 944 (2003).

    [58] E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe,
    "Ultrahigh-qq photonic crystal nanocavities realized by the local width
    modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).

    [59] B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-q photonic
    double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).

    [60] K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama,
    M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, "Few-fj/bit data
    transmissions using directly modulated lambda-scale embedded active region
    photonic-crystal lasers," Nat. Photon. 7, 569 (2013).

    [61] A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and
    Y. Arakawa, "Lasing oscillation in a three-dimensional photonic crystal
    nanocavity with a complete bandgap," Nat. Photon. 5, 91 (2011).

    [62] B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller,
    and J. Vu ckovi c, "Ultralow-threshold electrically pumped quantum-dot
    photonic-crystal nanocavity laser," Nat. Photon. 5, 297 (2011).

    [63] T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama,
    "Trapping and delaying photons for one nanosecond in an ultrasmall high-q
    photonic-crystal nanocavity," Nat. Photon. 1, 49 (2006).

    [64] E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo,
    H. Taniyama, H. Sumikura, and M. Notomi, "Large-scale integration of
    wavelength-addressable all-optical memories on a photonic crystal chip,"
    Nat. Photon. 8, 474 (2014).

    [65] D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultracompact
    and low-power optical switch based on silicon photonic crystals," Opt. Lett.
    33, 147 (2008).

    [66] K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and
    M. Notomi, "Sub-femtojoule all-optical switching using a photonic-crystal
    nanocavity," Nat. Photon. 4, 477 (2010).

    [67] R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, "Low-photonnumber
    optical switching with a single quantum dot coupled to a photonic
    crystal cavity," Phys. Rev. Lett. 108, 227402 (2012).

    [68] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel
    drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963
    (1998).

    [69] H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Quan, and C. M. Lieber,
    "A wavelength-selective photonic-crystal waveguide coupled to a nanowire
    light source," Nat. Photon. 2, 622 (2008).

    [70] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D.
    Joannopoulos, "High transmission through sharp bends in photonic crystal
    waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).

    [71] S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos,
    "Experimental demonstration of guiding and bending of electromagnetic
    waves in a photonic crystal," Science 282, 274 (1998).

    [72] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical
    waveguide:?a proposal and analysis," Opt. Lett. 24, 711 (1999).

    [73] M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis,
    R. Biswas, and K. M. Ho, "Guiding, bending, and splitting of electromagnetic
    waves in highly con ned photonic crystal waveguides," Phys. Rev. B
    63, 081107 (2001).

    [74] T. Baba, "Slow light in photonic crystals," Nat. Photon. 2, 465 (2008).

    [75] M. Notomi, E. Kuramochi, and T. Tanabe, "Large-scale arrays of ultrahigh q
    coupled nanocavities," Nat. Photon. 2, 741 (2008).

    [76] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama,
    "Extremely large group-velocity dispersion of line-defect waveguides
    in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).

    [77] Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control
    of slow light on a chip with photonic crystal waveguides," Nature 438, 65
    (2005).

    [78] K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali,
    R. Meade, and R. J. Ram, "High-q cmos-integrated photonic crystal
    microcavity devices," Sci. Rep. 4, 4077 (2014).

    [79] W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. van Campenhout,
    P. Bienstman, D. van Thourhout, R. Baets, V. Wiaux, and S. Beckx,
    "Basic structures for photonic integrated circuits in silicon-on-insulator," Opt.
    Express 12, 1583 (2004).

    [80] S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated
    circuit with membrane-type photonic crystal waveguides sharee j. mcnab,
    nikolaj moll, and yurii a. vlasov," Opt. Express 11, 2927 (2003).

    [81] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photnic crystals: putting
    a new twist on light," Nature 386, 143 (1997).

    [82] J. L. O'Brien, A. Furusawa, and J. Vu ckovi c, "Photonic quantum technologies,"
    Nat. Photon. 3, 687 (2009).

    [83] S.-Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, "Spontaneous
    radiation and lamb shift in three-dimensional photonic crystals," Phys. Rev.
    Lett. 84, 2136{2139 (2000).

    [84] X.-H. Wang, B.-Y. Gu, R. Wang, and H.-Q. Xu, "Decay kinetic properties
    of atoms in photonic crystals with absolute gaps," Phys. Rev. Lett. 91,
    113904 (2003).

    [85] C. U Lei and W. M. Zhang, "A quantum photonic dissipative transport
    theory," Ann. Phys. 327, 1408 (2012).

    [86] W. M. Zhang, P. Y. Lo, H. N. Xiong, M. W. Y. Tu, and F. Nori, "General
    non-markovian dynamics of open quantum systems," Phys. Rev. Lett. 109,
    170402 (2012).

    [87] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh,
    and W. L. Vos, "Controlling the dynamics of spontaneous
    emission from quantum dots by photonic crystals," Nature 430, 654 (2004).

    [88] J.-H. An and W. M. Zhang, "Non-markovian entanglement dynamics of
    noisy continuous-variable quantum channels," Phys. Rev. A 76, 042127
    (2007).

    [89] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, "Assessing nonmarkovian
    quantum dynamics," Phys. Rev. Lett. 101, 150402 (2008).

    [90] H.-P. Breuer, E.-M. Laine, and J. Piilo, "Measure for the degree of nonmarkovian
    behavior of quantum processes in open systems," Phys. Rev.
    Lett. 103, 210401 (2009).

    [91] E.-M. Laine, J. Piilo, and H.-P. Breuer, "Measure for the non-markovianity
    of quantum processes," Phys. Rev. A 81, 062115 (2010).

    [92] D. Chru sci nski and A. Kossakowski, "Non-markovian quantum dynamics:
    Local versus nonlocal," Phys. Rev. Lett. 104, 070406 (2010).

    [93] D. Chru sci nski, A. Kossakowski, and A. Rivas, "Measures of nonmarkovianity:
    Divisibility versus back
    ow of information," Phys. Rev. A
    83, 052128 (2011).

    [94] H. N. Xiong, W. M. Zhang, X. Wang, and M. H. Wu, "Exact non-markovian
    cavity dynamics strongly coupled to a reservoir," Phys. Rev. A 82, 012105
    (2010).

    [95] C. U Lei and W. M. Zhang, "Decoherence suppression of open quantum
    systems through a strong coupling to non-markovian reservoirs," Phys. Rev.
    A 84, 052116 (2011).

    [96] A. Rivas, S. F. Huelga, and M. B. Plenio, "Entanglement and nonmarkovianity
    of quantum evolutions," Phys. Rev. Lett. 105, 050403 (2010).

    [97] M. Znidari c, C. Pineda, and I. Garc a-Mata, "Non-markovian behavior of
    small and large complex quantum systems," Phys. Rev. Lett. 107, 080404
    (2011).

    [98] B. H. Liu, L. Li, Y. F. Huang, C. F. Li, G. C. Guo, E. M. Laine, H. P.
    Breuer, and J. Piilo, "Experimental control of the transition from markovian
    to non-markovian dynamics of open quantum systems," Nat. Phys. 7, 931
    (2011).

    [99] K. H. Madsen, S. Ates, T. Lund-Hansen, A. Lo er, S. Reitzenstein,
    A. Forchel, and P. Lodahl, "Observation of non-markovian dynamics of a
    single quantum dot in a micropillar cavity," Phys. Rev. Lett. 106, 233601
    (2011).

    [100] J. S. Tang, C. F. Li, Y. L. Li, X. B. Zou, G. C. Guo, H. P. Breuer, E. M. Laine,
    and J. Piilo, "Measuring non-markovianity of processes with controllable
    system-environment interaction," Europhys. Lett. 97, 10002 (2012).

    [101] S. Nakajima, "On quantum theory of transport phenomena," Prog. Theor.
    Phys. 20, 948 (1958).

    [102] R. Zwanzig, "Ensemble method in the theory of irreversibility," J. Chem.
    Phys. 33, 1338 (1960).

    [103] P. W. Anderson, "Absence of di usion in certain random lattices," Phys.
    Rev. 109, 1492-1505 (1958).

    [104] U. Fano, "Effects of con guration interaction on intensities and phase shifts,"
    Phys. Rev. 124, 1866-1878 (1961).

    [105] A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam
    Garg, and W. Zwerger, "Dynamics of the dissipative two-state system,"
    Rev. Mod. Phys. 59, 1-85 (1987).

    [106] W. M. Zhang, D. H. Feng, and R. Gilmore, "Coherent states: Theory and
    some applications," Rev. Mod. Phys. 62, 867-927 (1990).

    [107] R. P. Feynman and F. L. Vernon, "The theory of a general quantum system
    interacting with a linear dissipative system," Ann. Phys. 24, 118 (1963).

    [108] J. Schwinger, "Brownian motion of a quantum oscillator," J. Math. Phys. 2,
    407 (1961).

    [109] L. V. Keldysh, "Diagram technique for nonequilibrium processes," Sov. Phys.
    JETP 20, 1018 (1965).

    [110] L.P. Kadano and G. Baym, Quantum Statistical Mechanics (Benjamin,
    New York, 1962).

    [111] X. Saint Raymond, Elementary Introduction to the Theory of Pseudodi er-
    ential Operators. Chap. 1.1 (CRC Press, London, 1991).

    [112] H. T. Tan and W. M. Zhang, "Non-markovian dynamics of an open quantum
    system with initial system-reservoir correlations: A nanocavity coupled to a
    coupled-resonator optical waveguide," Phys. Rev. A 83, 032102 (2011).

    [113] P. Y. Yang, C. Y. Lin, and W. M. Zhang, "Master equation approach to transient
    quantum transport in nanostructures incorporating initial correlations,"
    Phys. Rev. B 92, 165403 (2015).

    [114] W. M. Zhang and D. H. Feng, "Quantum nonintegrability in finite systems,"
    Phys. Rep. 252, 1 (1995).

    [115] W. H. Zurek, "Decoherence, einselection, and the quantum origins of the
    classical," Rev. Mod. Phys. 75, 715{775 (2003).

    [116] C. J. Myatt, B. E. king, Q. A. Turchette, C. A. Sackett, D. Kielpinski,
    W. M. Itano, C. Monroe, and D. J. Wineland, "Decoherence of quantum
    superpositions through coupling to engineered reservoirs," Nature 403, 269
    (2000).

    [117] S. Del eglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond,
    and S. Haroche, "Reconstruction of non-classical cavity eld states with
    snapshots of their decoherence," Nature 455, 510 (2008).

    [118] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K.
    Vandersypen, "Spins in few-electron quantum dots," Rev. Mod. Phys. 79,
    1217-1265 (2007).

    [119] J. Q. You and F. Nori, "Atomic physics and quantum optics using superconducting
    circuits," Nature 474, 589 (2011).

    [120] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, "Hybrid quantum circuits:
    Superconducting circuits interacting with other quantum systems," Rev.
    Mod. Phys. 85, 623-653 (2013).

    [121] F. Galve, L. A. Pach on, and D. Zueco, "Bringing entanglement to the high
    temperature limit," Phys. Rev. Lett. 105, 180501 (2010).

    [122] T. Ma, Y. Chen, T. Chen, S. R. Hedemann, and T. Yu, "Crossover
    between non-markovian and markovian dynamics induced by a hierarchical
    environment," Phys. Rev. A 90, 042108 (2014).

    [123] D. Chru sci nski and S. Maniscalco, "Degree of non-markovianity of quantum
    evolution," Phys. Rev. Lett. 112, 120404 (2014).

    [124] C. Y. Cai, L.-P. Yang, and C. P. Sun, "Threshold for nonthermal stabilization
    of open quantum systems," Phys. Rev. A 89, 012128 (2014).

    [125] A. Rivas, S. F. Huelga, and M. B. Plenio, "Quantum non-markovianity:
    characterization, quanti cation and detection," Rep. Prog. Phys. 77, 094001
    (2014).

    [126] P. Y. Lo, H. N. Xiong, and W. M. Zhang, "Breakdown of bose-einstein
    distribution in photonic crystals," Sci. Rep. 5, 9423 (2015).

    [127] A. F. Estrada and L. A. Pach on, "Quantum limit for driven linear nonmarkovian
    open-quantum-systems," New J. Phys. 17, 033038 (2015).

    [128] H. B. Chen, N. Lambert, Y. C. Cheng, Y. N. Chen, and F. Nori, "Using
    non-markovian measures to evaluate quantum master equations for
    photosynthesis," Sci. Rep. 5, 12753 (2015).

    [129] M. M. Ali, P. Y. Lo, M. W. Y. Tu, and W. M. Zhang, "Non-markovianity
    measure using two-time correlation functions," Phys. Rev. A 92, 062306
    (2015).

    [130] H. N. Xiong, P. Y. Lo, W. M. Zhang, D. H. Feng, and F. Nori, "Nonmarkovian
    complexity in the quantum-to-classical transition," Sci. Rep. 5,
    13353 (2015).

    [131] A. O. Caldeira and A. J. Leggett, "Quantum tunnelling in a dissipative
    system," Ann. Phys. 149, 374 (1983).

    [132] R. Kubo, "The
    uctuation-dissipation theorem," Rep. Prog. Phys. 29, 255
    (1966).

    [133] P. Langevin, "On the theory of brownian motion," C. R. Acad. Sci. (Paris)
    146, 530 (1908).

    [134] L. A. Pach on and P. Brumer, "Direct experimental determination of spectral
    densities of molecular complexes," J. Chem. Phys. 141, 174102 (2014).

    [135] J. Paavola, J. Piilo, K.-A. Suominen, and S. Maniscalco, "Environment dependent
    dissipation in quantum brownian motion," Phys. Rev. A 79,
    052120 (2009).

    [136] M. H. Wu, C. U Li, W. M. Zhang, and H. N. Xiong, "Non-markovian
    dynamics of a microcavity coupled to a waveguide in photonic crystals,"
    Opt. Express 18, 18407 (2010).

    [137] E. Wigner, "On the quantum correction for thermodynamic equilibrium,"
    Phys. Rev. 40, 749{759 (1932).

    [138] K. E. Cahill and R. J. Glauber, "Density operators and quasiprobability
    distributions," Phys. Rev. 177, 1882{1902 (1969).

    [139] R. J. Glauber, "Coherent and incoherent states of the radiation eld," Phys.
    Rev. 131, 2766{2788 (1963).

    [140] V. V. Dodonov, I. A. Malkin, and V. I. Man'ko, "Even and odd coherent
    states and excitations of a singular oscillator," Physica 72, 597 (1973).

    [141] B. Yurke and D. Stoler, "Generating quantum mechanical superpositions of
    macroscopically distinguishable states via amplitude dispersion," Phys. Rev.
    Lett. 57, 13{16 (1986).

    [142] D. Stoler, "Equivalence classes of minimum uncertainty packets," Phys. Rev.
    D 1, 3217{3219 (1970).

    [143] D. Stoler, "Equivalence classes of minimum-uncertainty packets. ii," Phys.
    Rev. D 4, 1925{1926 (1971).

    [144] A. Kireev, A. Mann, M. Revzen, and H. Umezawa, "Thermal squeezed
    states in thermo eld dynamics and quantum and thermal
    uctuations,"
    Phys. Lett. A 142, 215 (1989).

    [145] P. Marian and T. A. Marian, "Squeezed states with thermal noise. i. photonnumber
    statistics," Phys. Rev. A 47, 4474-4486 (1993).

    [146] H. P. Yuen, "Two-photon coherent states of the radiation field," Phys. Rev.
    A 13, 2226{2243 (1976).

    [147] M. S. Kim, F. A. M. de Oliveira, and P. L. Knight, "Properties of squeezed
    number states and squeezed thermal states," Phys. Rev. A 40, 2494{2503
    (1989).

    [148] M. C. Teich and B. E. A. Saleh, "Squeezed states of light," Quantum Opt.
    1, 153{191 (1989).

    [149] H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics,
    2nd Ed. (Wiley-VCH, 2004).

    [150] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, "Measurement of
    the wigner distribution and the density matrix of a light mode using optical
    homodyne tomography: Application to squeezed states and the vacuum,"
    Phys. Rev. Lett. 70, 1244-1247 (1993).

    [151] G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum
    states of squeezed light," Nature 387, 471 (1997).

    [152] D. G. Welsch, W. Vogel, and T. Opatrn y, "Homodyne detection and
    quantum-state reconstruction," Prog. Opt. 39, 63 (2009).

    [153] M. Brune, J. Bernu, C. Guerlin, S. Del eglise, C. Sayrin, S. Gleyzes, S. Kuhr,
    I. Dotsenko, J. M. Raimond, and S. Haroche, "Process tomography of eld
    damping and measurement of fock state lifetimes by quantum nondemolition
    photon counting in a cavity," Phys. Rev. Lett. 101, 240402 (2008).

    [154] K. Sakoda, Optical properties of photonic crystals (Springer, Berlin, 2005).

    [155] Z.-Y. Li, L.-L. Lin, and Z.-Q. Zhang, "Spontaneous emission from photonic
    crystals: Full vectorial calculations," Phys. Rev. Lett. 84, 4341{4344 (2000).

    [156] Z.-Y. Li and Y. Xia, "Full vectorial model for quantum optics in threedimensional
    photonic crystals," Phys. Rev. A 63, 043817 (2001).

    [157] R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke,
    and N. A. Nicorovici, "Density of states functions for photonic crystals,"
    Phys. Rev. E 69, 016609 (2004).

    [158] A. Birner, R. B. Wehrspohn, U. M. Gosele, and K. Busch, "Silicon-based
    photonic crystals," Adv. Mater. 13, 377 (2001).

    [159] M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, "Enhanced photonic
    band-gap con nement via van hove saddle point singularities," Phys. Rev.
    Lett. 96, 033904 (2006).

    [160] D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M.
    Platzman, "Photonic band structure and defects in one and two dimensions,"
    J. Opt. Soc. Am. B 10, 314 (1993).

    [161] E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M.
    Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic
    band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50,
    1945-1948 (1994).

    [162] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes,
    P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, and
    S. Haroche, "Real-time quantum feedback prepares and stabilizes photon
    number states," Nature 477, 73 (2011).

    [163] G. Lachs, "Theoretical aspects of mixtures of thermal and coherent radiation,"
    Phys. Rev. 138, B1012-B1016 (1965).

    [164] F. A. M. de Oliveira, M. S. Kim, P. L. Knight, and V. Buek, "Properties
    of displaced number states," Phys. Rev. A 41, 2645-2652 (1990).

    [165] S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Del eglise, U. B. Ho , M. Brune,
    J.-M. Raimond, and S. Haroche, "Quantum jumps of light recording the
    birth and death of a photon in a cavity," Nature 446, 297 (2007).

    [166] C. Guerlin, J. Bernu, S. Del eglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune,
    J.-M. Raimond, and S. Haroche, "Progressive eld-state collapse and
    quantum non-demolition photon counting," Nature 448, 889 (2007).

    [167] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, "Quantum
    entanglement," Rev. Mod. Phys. 81, 865-942 (2009).

    [168] S. Vinjanampathy and J. Anders, "Quantum thermodynamics," arXiv ,
    1508.06099 (2015).

    [169] J. Millen and A. Xuereb, "Perspective on quantum thermodynamics," New
    J. Phys. 18, 011002 (2016).

    [170] B. L. Schumaker, "Quantum mechanical pure states with gaussian wave
    functions," Phys. Rep. 135, 317-408 (1971).

    [171] S. Olivares, "Quantum optics in the phase space: A tutorial on gaussian
    states," Eur. Phys. J. Special Topics 203, 3-24 (2012).

    下載圖示 校內:2017-06-22公開
    校外:2017-06-22公開
    QR CODE