| 研究生: |
羅炳蒝 Lo, Ping-Yuan |
|---|---|
| 論文名稱: |
光子系統中的非馬可夫動力學 Non-Markovian Dynamics in Photonic Systems |
| 指導教授: |
張為民
Zhang, Wei-Min |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 非馬可夫動力學 、光子晶體 、非平衡態統計物理 |
| 外文關鍵詞: | Non-Markovian Dynamics, Photonic Crystals, Non-Equilibrium Statistical Physics |
| 相關次數: | 點閱:92 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用嚴格主方程來研究線性光子開放系統的非馬可夫動力學。透過嚴格主方程與非平衡態格林函數之間的連結,我們推導出描述該類量子開放系統非馬可夫動力學的解析解。在進一步分析我們所得到的解析結果後,我們依其動力學演化的特性將我們所研究的量子開放系統所有可能的動力學演化過程分成四類,並給出了由環境造成的量子退相干所導致的量子─古典變遷的物理圖像。在完整的討論並分析非馬可夫動力學的定性行為後,我們應用這套理論方法來研究光子晶體中的空腔系統在任意有限溫度下的動力學演化,並進一步探討光子晶體中的光子能隙結構對空腔動力學的影響。
In this thesis, we present an analytic solution of non-Markovian dynamics for non-interacting photonic open quantum systems. We explore the non-Markovian dynamics of such open quantum systems through the solutions of the exact master equation, and carry out the detailed analysis of non-Markovian dynamics from these solutions. By further analyzing these analytic solutions, we capture the main features of the non-Markovian dynamics and categorize them into four different time evolution scenarios. This provides a general picture on the quantum-to-classical transition, which is caused by the environment-induced decoherence. After the comprehensive discussions about the qualitative behaviors of non-Markovian decoherence dynamics, we apply the theory to study the non-Markovian cavity dynamics in photonic crystals at finite temperature, and explicitly show the influence of the photonic band gap on the cavity photon field.
[1] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems
(Oxford University Press, New York, 2002).
[2] U. Weiss, Quantum Dissipative Systems 3rd Ed. (World Scienti c, Singapore,
2008).
[3] R. Bulla, T. A. Costi, and T. Pruschke, "Numerical renormalization group
method for quantum impurity systems," Rev. Mod. Phys. 80, 395-450
(2008).
[4] J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio, "Efficient simulation
of strong system-environment interactions," Phys. Rev. Lett. 105, 050404
(2010).
[5] U. Schollwock, "The density-matrix renormalization group in the age of
matrix product states," Ann. Phys. 326, 96 (2011).
[6] J. Bon ca, S. A. Trugman, and I. Batisti c, "Holstein polaron," Phys. Rev.
B 60, 1633-1642 (1999).
[7] S. R. White, "Density matrix formulation for quantum renormalization
groups," Phys. Rev. Lett. 69, 2863-2866 (1992).
[8] S. R. White, "Strongly correlated electron systems and the density matrix
renormalization group," Phys. Rep. 301, 187 (1998).
[9] C. Zhang, E. Jeckelmann, and S. R. White, "Density matrix approach to
local hilbert space reduction," Phys. Rev. Lett. 80, 2661{2664 (1998).
[10] W. Pauli, Festschrift zum 60 Geburstag A. Sommerfeld , S.30 (1928).
[11] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, "Completely positive
dynamical semigroups of n?level systems," J. Math. Phys. 17, 821-825
(1976).
[12] G. Lindblad, "On the generators of quantum dynamical semigroups," Commun.
Math. Phys. 48, 119-130.
[13] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University
press, Cambridge, 1997).
[14] H. J. Carmichael, An Open Systems Approach to Quantum Optics, Lecture
Notes in Physics (Springer-Verlag, Berlin, 1993).
[15] R. Koslo , "Quantum thermodynamics: A dynamical viewpoint," Entropy
15, 2100 (2013).
[16] H. Spohn and J. L. Lebowitz, Irreversible Thermodynamics for Quantum
Systems Weakly Coupled to Thermal Reservoirs (John Wiley & Sons, Inc.,
2007).
[17] H. Haken, "Cooperative phenomena in systems far from thermal equilibrium
and in nonphysical systems," Rev. Mod. Phys. 47, 67-121 (1975).
[18] H. Spohn, "Kinetic equations from hamiltonian dynamics: Markovian limits,"
Rev. Mod. Phys. 52, 569-615 (1980).
[19] A. Recati, P. O. Fedichev, W. Zwerger, J. von Delft, and P. Zoller, "Atomic
quantum dots coupled to a reservoir of a super
uid bose-einstein condensate,"
Phys. Rev. Lett. 94, 040404 (2005).
[20] D. Jaksch and P. Zoller, "The cold atom hubbard toolbox," Ann. Phys. 315,
52 (2005).
[21] M. Knap, D. A. Abanin, and E. Demler, "Dissipative dynamics of a driven
quantum spin coupled to a bath of ultracold fermions," Phys. Rev. Lett.
111, 265302 (2013).
[22] D. Sokolovski and S. A. Gurvitz, "Unusual decoherence in qubit measurements
with a bose-einstein condensate," Phys. Rev. A 79, 032106 (2009).
[23] S. Groblacher, A. Trubarov, N. Prigge, G. D. Cole, M. Aspelmeyer, and
J. Eisert, "Observation of non-markovian micromechanical brownian motion,"
Nat. Commun. 6, 7606 (2015).
[24] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, "Cavity optomechanics,"
Rev. Mod. Phys. 86, 1391-1452 (2014).
[25] S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, "Observation
of strong coupling between a micromechanical resonator and an optical
cavity field," Nature 460, 724 (2009).
[26] T. J. Kippenberg and K. J. Vahala, "Cavity optomechanics: Back-action at
the mesoscale," Science 321, 1172-1176 (2008).
[27] T. Brandes, "Coherent and collective quantum optical effects in mesoscopic
systems," Phys. Rep. 408, 315 (2005).
[28] X. Zhao, W. Shi, L.-A. Wu, and T. Yu, "Fermionic stochastic schrodinger
equation and master equation: An open-system model," Phys. Rev. A 86,
032116 (2012).
[29] M. W. Y. Tu and W. M. Zhang, "Non-markovian decoherence theory for a
double-dot charge qubit," Phys. Rev. B 78, 235311 (2008).
[30] J. Jin, M. W. Y. Tu, W. M. Zhang, and Y. J. Yan, "Non-equilibrium
quantum theory for nanodevices based on the feynman-vernon in
uence
functional," New. J. Phys. 12, 083013 (2010).
[31] M. W. Y. Tu, W. M. Zhang, and J. Jin, "Intrinsic coherence dynamics and
phase localization in nanoscale aharonov-bohm interferometers," Phys. Rev.
B 83, 115318 (2011).
[32] M. W. Y. Tu, W. M. Zhang, and F. Nori, "Coherent control of double-dot
molecules using aharonov-bohm magnetic
flux," Phys. Rev. B 86, 195403
(2012).
[33] M. W. Y. Tu, W. M. Zhang, J. Jin, O. Entin-Wohlman, and A. Aharony,
"Transient quantum transport in double-dot aharonov-bohm interferometers,"
Phys. Rev. B 86, 115453 (2012).
[34] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa,
S. Tarucha, and L. P. Kouwenhoven, "Electron transport through double
quantum dots," Rev. Mod. Phys. 75, 1{22 (2002).
[35] J. P. Reithmaier, G. Se.
k, A. Lo er, C. Hofmann, S. Kuhn, S. Reitzenstein,
L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel,
"Strong coupling in a single quantum dotvsemiconductor microcavity system,"
Nature 432, 197 (2004).
[36] S. Haroche and D. Kleppner, "Cavity quantum electrodynamics," Physics
Today 42, 24 (1989).
[37] H.Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, "Cavity quantum
electrodynamics," Rep. Prog. Phys. 69, 1325 (2006).
[38] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears,
B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret,
and R. J. Schoelkopf, "Observation of high coherence in josephson
junction qubits measured in a three-dimensional circuit qed architecture,"
Phys. Rev. Lett. 107, 240501 (2011).
[39] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz,
J. J. Garcia-Ripoll, D. Zueco, T. Hummer, E. Solano, A. Marx, and R. Gross,
"Circuit quantum electrodynamics in the ultrastrong-coupling regime," Nat.
Phys. 6, 772 (2010).
[40] A. Blais, R.-S. Huang, A. Wallra , S. M. Girvin, and R. J. Schoelkopf,
"Cavity quantum electrodynamics for superconducting electrical circuits: An
architecture for quantum computation," Phys. Rev. A 69, 062320 (2004).
[41] A. Wallra , D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer,
S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single
photon to a superconducting qubit using circuit quantum electrodynamics,"
Nature 431, 162 (2004).
[42] A. G. kofman, G. Kurizki, and B. Sherman, "Spontaneous and induced
atomic decay in photonic band structures," J. Mod. Opt. 41, 353 (1994).
[43] P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, "Fundamental
quantum optics in structured reservoirs," Rep. Prog. Phys. 63, 455
(2000).
[44] S. John and J. Wang, "Quantum electrodynamics near a photonic band gap:
Photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421
(1990).
[45] S. John and J. Wang, "Quantum optics of localized light in a photonic band
gap," Phys. Rev. B 43, 12772{12789 (1991).
[46] J. Prior, I. de Vega, A. W. Chin, S. F. Huelga, and M. B. Plenio, "Quantum
dynamics in photonic crystals," Phys. Rev. A 87, 013428 (2013).
[47] N. Lambert, Y. N. Chen, Y. C. Cheng, C. M. Li, G. Y. Chen, and F. Nori,
"Quantum biology," Nat. Phys. 9, 10 (2013).
[48] E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D.
Scholes, "Coherently wired light-harvesting in photosynthetic marine algae
at ambient temperature," Nature 463, 644 (2009).
[49] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and
electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[50] S. John, "Strong localization of photons in certain disordered dielectric
superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[51] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure:
The face-centered-cubic case employing nonspherical atoms," Phys. Rev.
Lett. 67, 2295-2298 (1991).
[52] S. Noda and T. Baba, Roadmap on photonic crystals (Optoelectronic Industry
and Technology Development Association (OITDA), Japan, 2003).
[53] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic
Crystals: Modeling the Flow of Light (Princeton, New York, 2008).
[54] M. Notomi, "Manipulating light with strongly modulated photonic crystals,"
Rep. Prog. Phys. 73, 096501 (2010).
[55] K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili,
and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep. 444,
101 (2007).
[56] S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by
photonic crystals and nanocavities," Nat. Photon. 1, 449 (2007).
[57] Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-q photonic nanocavity
in a two-dimensional photonic crystal," Nature 425, 944 (2003).
[58] E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe,
"Ultrahigh-qq photonic crystal nanocavities realized by the local width
modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[59] B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-q photonic
double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[60] K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama,
M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, "Few-fj/bit data
transmissions using directly modulated lambda-scale embedded active region
photonic-crystal lasers," Nat. Photon. 7, 569 (2013).
[61] A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and
Y. Arakawa, "Lasing oscillation in a three-dimensional photonic crystal
nanocavity with a complete bandgap," Nat. Photon. 5, 91 (2011).
[62] B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller,
and J. Vu ckovi c, "Ultralow-threshold electrically pumped quantum-dot
photonic-crystal nanocavity laser," Nat. Photon. 5, 297 (2011).
[63] T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama,
"Trapping and delaying photons for one nanosecond in an ultrasmall high-q
photonic-crystal nanocavity," Nat. Photon. 1, 49 (2006).
[64] E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo,
H. Taniyama, H. Sumikura, and M. Notomi, "Large-scale integration of
wavelength-addressable all-optical memories on a photonic crystal chip,"
Nat. Photon. 8, 474 (2014).
[65] D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultracompact
and low-power optical switch based on silicon photonic crystals," Opt. Lett.
33, 147 (2008).
[66] K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and
M. Notomi, "Sub-femtojoule all-optical switching using a photonic-crystal
nanocavity," Nat. Photon. 4, 477 (2010).
[67] R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, "Low-photonnumber
optical switching with a single quantum dot coupled to a photonic
crystal cavity," Phys. Rev. Lett. 108, 227402 (2012).
[68] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel
drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963
(1998).
[69] H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Quan, and C. M. Lieber,
"A wavelength-selective photonic-crystal waveguide coupled to a nanowire
light source," Nat. Photon. 2, 622 (2008).
[70] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D.
Joannopoulos, "High transmission through sharp bends in photonic crystal
waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[71] S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos,
"Experimental demonstration of guiding and bending of electromagnetic
waves in a photonic crystal," Science 282, 274 (1998).
[72] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical
waveguide:?a proposal and analysis," Opt. Lett. 24, 711 (1999).
[73] M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis,
R. Biswas, and K. M. Ho, "Guiding, bending, and splitting of electromagnetic
waves in highly con ned photonic crystal waveguides," Phys. Rev. B
63, 081107 (2001).
[74] T. Baba, "Slow light in photonic crystals," Nat. Photon. 2, 465 (2008).
[75] M. Notomi, E. Kuramochi, and T. Tanabe, "Large-scale arrays of ultrahigh q
coupled nanocavities," Nat. Photon. 2, 741 (2008).
[76] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama,
"Extremely large group-velocity dispersion of line-defect waveguides
in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[77] Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control
of slow light on a chip with photonic crystal waveguides," Nature 438, 65
(2005).
[78] K. K. Mehta, J. S. Orcutt, O. Tehar-Zahav, Z. Sternberg, R. Bafrali,
R. Meade, and R. J. Ram, "High-q cmos-integrated photonic crystal
microcavity devices," Sci. Rep. 4, 4077 (2014).
[79] W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. van Campenhout,
P. Bienstman, D. van Thourhout, R. Baets, V. Wiaux, and S. Beckx,
"Basic structures for photonic integrated circuits in silicon-on-insulator," Opt.
Express 12, 1583 (2004).
[80] S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated
circuit with membrane-type photonic crystal waveguides sharee j. mcnab,
nikolaj moll, and yurii a. vlasov," Opt. Express 11, 2927 (2003).
[81] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photnic crystals: putting
a new twist on light," Nature 386, 143 (1997).
[82] J. L. O'Brien, A. Furusawa, and J. Vu ckovi c, "Photonic quantum technologies,"
Nat. Photon. 3, 687 (2009).
[83] S.-Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, "Spontaneous
radiation and lamb shift in three-dimensional photonic crystals," Phys. Rev.
Lett. 84, 2136{2139 (2000).
[84] X.-H. Wang, B.-Y. Gu, R. Wang, and H.-Q. Xu, "Decay kinetic properties
of atoms in photonic crystals with absolute gaps," Phys. Rev. Lett. 91,
113904 (2003).
[85] C. U Lei and W. M. Zhang, "A quantum photonic dissipative transport
theory," Ann. Phys. 327, 1408 (2012).
[86] W. M. Zhang, P. Y. Lo, H. N. Xiong, M. W. Y. Tu, and F. Nori, "General
non-markovian dynamics of open quantum systems," Phys. Rev. Lett. 109,
170402 (2012).
[87] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh,
and W. L. Vos, "Controlling the dynamics of spontaneous
emission from quantum dots by photonic crystals," Nature 430, 654 (2004).
[88] J.-H. An and W. M. Zhang, "Non-markovian entanglement dynamics of
noisy continuous-variable quantum channels," Phys. Rev. A 76, 042127
(2007).
[89] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, "Assessing nonmarkovian
quantum dynamics," Phys. Rev. Lett. 101, 150402 (2008).
[90] H.-P. Breuer, E.-M. Laine, and J. Piilo, "Measure for the degree of nonmarkovian
behavior of quantum processes in open systems," Phys. Rev.
Lett. 103, 210401 (2009).
[91] E.-M. Laine, J. Piilo, and H.-P. Breuer, "Measure for the non-markovianity
of quantum processes," Phys. Rev. A 81, 062115 (2010).
[92] D. Chru sci nski and A. Kossakowski, "Non-markovian quantum dynamics:
Local versus nonlocal," Phys. Rev. Lett. 104, 070406 (2010).
[93] D. Chru sci nski, A. Kossakowski, and A. Rivas, "Measures of nonmarkovianity:
Divisibility versus back
ow of information," Phys. Rev. A
83, 052128 (2011).
[94] H. N. Xiong, W. M. Zhang, X. Wang, and M. H. Wu, "Exact non-markovian
cavity dynamics strongly coupled to a reservoir," Phys. Rev. A 82, 012105
(2010).
[95] C. U Lei and W. M. Zhang, "Decoherence suppression of open quantum
systems through a strong coupling to non-markovian reservoirs," Phys. Rev.
A 84, 052116 (2011).
[96] A. Rivas, S. F. Huelga, and M. B. Plenio, "Entanglement and nonmarkovianity
of quantum evolutions," Phys. Rev. Lett. 105, 050403 (2010).
[97] M. Znidari c, C. Pineda, and I. Garc a-Mata, "Non-markovian behavior of
small and large complex quantum systems," Phys. Rev. Lett. 107, 080404
(2011).
[98] B. H. Liu, L. Li, Y. F. Huang, C. F. Li, G. C. Guo, E. M. Laine, H. P.
Breuer, and J. Piilo, "Experimental control of the transition from markovian
to non-markovian dynamics of open quantum systems," Nat. Phys. 7, 931
(2011).
[99] K. H. Madsen, S. Ates, T. Lund-Hansen, A. Lo er, S. Reitzenstein,
A. Forchel, and P. Lodahl, "Observation of non-markovian dynamics of a
single quantum dot in a micropillar cavity," Phys. Rev. Lett. 106, 233601
(2011).
[100] J. S. Tang, C. F. Li, Y. L. Li, X. B. Zou, G. C. Guo, H. P. Breuer, E. M. Laine,
and J. Piilo, "Measuring non-markovianity of processes with controllable
system-environment interaction," Europhys. Lett. 97, 10002 (2012).
[101] S. Nakajima, "On quantum theory of transport phenomena," Prog. Theor.
Phys. 20, 948 (1958).
[102] R. Zwanzig, "Ensemble method in the theory of irreversibility," J. Chem.
Phys. 33, 1338 (1960).
[103] P. W. Anderson, "Absence of di usion in certain random lattices," Phys.
Rev. 109, 1492-1505 (1958).
[104] U. Fano, "Effects of con guration interaction on intensities and phase shifts,"
Phys. Rev. 124, 1866-1878 (1961).
[105] A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam
Garg, and W. Zwerger, "Dynamics of the dissipative two-state system,"
Rev. Mod. Phys. 59, 1-85 (1987).
[106] W. M. Zhang, D. H. Feng, and R. Gilmore, "Coherent states: Theory and
some applications," Rev. Mod. Phys. 62, 867-927 (1990).
[107] R. P. Feynman and F. L. Vernon, "The theory of a general quantum system
interacting with a linear dissipative system," Ann. Phys. 24, 118 (1963).
[108] J. Schwinger, "Brownian motion of a quantum oscillator," J. Math. Phys. 2,
407 (1961).
[109] L. V. Keldysh, "Diagram technique for nonequilibrium processes," Sov. Phys.
JETP 20, 1018 (1965).
[110] L.P. Kadano and G. Baym, Quantum Statistical Mechanics (Benjamin,
New York, 1962).
[111] X. Saint Raymond, Elementary Introduction to the Theory of Pseudodi er-
ential Operators. Chap. 1.1 (CRC Press, London, 1991).
[112] H. T. Tan and W. M. Zhang, "Non-markovian dynamics of an open quantum
system with initial system-reservoir correlations: A nanocavity coupled to a
coupled-resonator optical waveguide," Phys. Rev. A 83, 032102 (2011).
[113] P. Y. Yang, C. Y. Lin, and W. M. Zhang, "Master equation approach to transient
quantum transport in nanostructures incorporating initial correlations,"
Phys. Rev. B 92, 165403 (2015).
[114] W. M. Zhang and D. H. Feng, "Quantum nonintegrability in finite systems,"
Phys. Rep. 252, 1 (1995).
[115] W. H. Zurek, "Decoherence, einselection, and the quantum origins of the
classical," Rev. Mod. Phys. 75, 715{775 (2003).
[116] C. J. Myatt, B. E. king, Q. A. Turchette, C. A. Sackett, D. Kielpinski,
W. M. Itano, C. Monroe, and D. J. Wineland, "Decoherence of quantum
superpositions through coupling to engineered reservoirs," Nature 403, 269
(2000).
[117] S. Del eglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond,
and S. Haroche, "Reconstruction of non-classical cavity eld states with
snapshots of their decoherence," Nature 455, 510 (2008).
[118] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K.
Vandersypen, "Spins in few-electron quantum dots," Rev. Mod. Phys. 79,
1217-1265 (2007).
[119] J. Q. You and F. Nori, "Atomic physics and quantum optics using superconducting
circuits," Nature 474, 589 (2011).
[120] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, "Hybrid quantum circuits:
Superconducting circuits interacting with other quantum systems," Rev.
Mod. Phys. 85, 623-653 (2013).
[121] F. Galve, L. A. Pach on, and D. Zueco, "Bringing entanglement to the high
temperature limit," Phys. Rev. Lett. 105, 180501 (2010).
[122] T. Ma, Y. Chen, T. Chen, S. R. Hedemann, and T. Yu, "Crossover
between non-markovian and markovian dynamics induced by a hierarchical
environment," Phys. Rev. A 90, 042108 (2014).
[123] D. Chru sci nski and S. Maniscalco, "Degree of non-markovianity of quantum
evolution," Phys. Rev. Lett. 112, 120404 (2014).
[124] C. Y. Cai, L.-P. Yang, and C. P. Sun, "Threshold for nonthermal stabilization
of open quantum systems," Phys. Rev. A 89, 012128 (2014).
[125] A. Rivas, S. F. Huelga, and M. B. Plenio, "Quantum non-markovianity:
characterization, quanti cation and detection," Rep. Prog. Phys. 77, 094001
(2014).
[126] P. Y. Lo, H. N. Xiong, and W. M. Zhang, "Breakdown of bose-einstein
distribution in photonic crystals," Sci. Rep. 5, 9423 (2015).
[127] A. F. Estrada and L. A. Pach on, "Quantum limit for driven linear nonmarkovian
open-quantum-systems," New J. Phys. 17, 033038 (2015).
[128] H. B. Chen, N. Lambert, Y. C. Cheng, Y. N. Chen, and F. Nori, "Using
non-markovian measures to evaluate quantum master equations for
photosynthesis," Sci. Rep. 5, 12753 (2015).
[129] M. M. Ali, P. Y. Lo, M. W. Y. Tu, and W. M. Zhang, "Non-markovianity
measure using two-time correlation functions," Phys. Rev. A 92, 062306
(2015).
[130] H. N. Xiong, P. Y. Lo, W. M. Zhang, D. H. Feng, and F. Nori, "Nonmarkovian
complexity in the quantum-to-classical transition," Sci. Rep. 5,
13353 (2015).
[131] A. O. Caldeira and A. J. Leggett, "Quantum tunnelling in a dissipative
system," Ann. Phys. 149, 374 (1983).
[132] R. Kubo, "The
uctuation-dissipation theorem," Rep. Prog. Phys. 29, 255
(1966).
[133] P. Langevin, "On the theory of brownian motion," C. R. Acad. Sci. (Paris)
146, 530 (1908).
[134] L. A. Pach on and P. Brumer, "Direct experimental determination of spectral
densities of molecular complexes," J. Chem. Phys. 141, 174102 (2014).
[135] J. Paavola, J. Piilo, K.-A. Suominen, and S. Maniscalco, "Environment dependent
dissipation in quantum brownian motion," Phys. Rev. A 79,
052120 (2009).
[136] M. H. Wu, C. U Li, W. M. Zhang, and H. N. Xiong, "Non-markovian
dynamics of a microcavity coupled to a waveguide in photonic crystals,"
Opt. Express 18, 18407 (2010).
[137] E. Wigner, "On the quantum correction for thermodynamic equilibrium,"
Phys. Rev. 40, 749{759 (1932).
[138] K. E. Cahill and R. J. Glauber, "Density operators and quasiprobability
distributions," Phys. Rev. 177, 1882{1902 (1969).
[139] R. J. Glauber, "Coherent and incoherent states of the radiation eld," Phys.
Rev. 131, 2766{2788 (1963).
[140] V. V. Dodonov, I. A. Malkin, and V. I. Man'ko, "Even and odd coherent
states and excitations of a singular oscillator," Physica 72, 597 (1973).
[141] B. Yurke and D. Stoler, "Generating quantum mechanical superpositions of
macroscopically distinguishable states via amplitude dispersion," Phys. Rev.
Lett. 57, 13{16 (1986).
[142] D. Stoler, "Equivalence classes of minimum uncertainty packets," Phys. Rev.
D 1, 3217{3219 (1970).
[143] D. Stoler, "Equivalence classes of minimum-uncertainty packets. ii," Phys.
Rev. D 4, 1925{1926 (1971).
[144] A. Kireev, A. Mann, M. Revzen, and H. Umezawa, "Thermal squeezed
states in thermo eld dynamics and quantum and thermal
uctuations,"
Phys. Lett. A 142, 215 (1989).
[145] P. Marian and T. A. Marian, "Squeezed states with thermal noise. i. photonnumber
statistics," Phys. Rev. A 47, 4474-4486 (1993).
[146] H. P. Yuen, "Two-photon coherent states of the radiation field," Phys. Rev.
A 13, 2226{2243 (1976).
[147] M. S. Kim, F. A. M. de Oliveira, and P. L. Knight, "Properties of squeezed
number states and squeezed thermal states," Phys. Rev. A 40, 2494{2503
(1989).
[148] M. C. Teich and B. E. A. Saleh, "Squeezed states of light," Quantum Opt.
1, 153{191 (1989).
[149] H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics,
2nd Ed. (Wiley-VCH, 2004).
[150] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, "Measurement of
the wigner distribution and the density matrix of a light mode using optical
homodyne tomography: Application to squeezed states and the vacuum,"
Phys. Rev. Lett. 70, 1244-1247 (1993).
[151] G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum
states of squeezed light," Nature 387, 471 (1997).
[152] D. G. Welsch, W. Vogel, and T. Opatrn y, "Homodyne detection and
quantum-state reconstruction," Prog. Opt. 39, 63 (2009).
[153] M. Brune, J. Bernu, C. Guerlin, S. Del eglise, C. Sayrin, S. Gleyzes, S. Kuhr,
I. Dotsenko, J. M. Raimond, and S. Haroche, "Process tomography of eld
damping and measurement of fock state lifetimes by quantum nondemolition
photon counting in a cavity," Phys. Rev. Lett. 101, 240402 (2008).
[154] K. Sakoda, Optical properties of photonic crystals (Springer, Berlin, 2005).
[155] Z.-Y. Li, L.-L. Lin, and Z.-Q. Zhang, "Spontaneous emission from photonic
crystals: Full vectorial calculations," Phys. Rev. Lett. 84, 4341{4344 (2000).
[156] Z.-Y. Li and Y. Xia, "Full vectorial model for quantum optics in threedimensional
photonic crystals," Phys. Rev. A 63, 043817 (2001).
[157] R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke,
and N. A. Nicorovici, "Density of states functions for photonic crystals,"
Phys. Rev. E 69, 016609 (2004).
[158] A. Birner, R. B. Wehrspohn, U. M. Gosele, and K. Busch, "Silicon-based
photonic crystals," Adv. Mater. 13, 377 (2001).
[159] M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, "Enhanced photonic
band-gap con nement via van hove saddle point singularities," Phys. Rev.
Lett. 96, 033904 (2006).
[160] D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M.
Platzman, "Photonic band structure and defects in one and two dimensions,"
J. Opt. Soc. Am. B 10, 314 (1993).
[161] E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M.
Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic
band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50,
1945-1948 (1994).
[162] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes,
P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, and
S. Haroche, "Real-time quantum feedback prepares and stabilizes photon
number states," Nature 477, 73 (2011).
[163] G. Lachs, "Theoretical aspects of mixtures of thermal and coherent radiation,"
Phys. Rev. 138, B1012-B1016 (1965).
[164] F. A. M. de Oliveira, M. S. Kim, P. L. Knight, and V. Buek, "Properties
of displaced number states," Phys. Rev. A 41, 2645-2652 (1990).
[165] S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Del eglise, U. B. Ho , M. Brune,
J.-M. Raimond, and S. Haroche, "Quantum jumps of light recording the
birth and death of a photon in a cavity," Nature 446, 297 (2007).
[166] C. Guerlin, J. Bernu, S. Del eglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune,
J.-M. Raimond, and S. Haroche, "Progressive eld-state collapse and
quantum non-demolition photon counting," Nature 448, 889 (2007).
[167] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, "Quantum
entanglement," Rev. Mod. Phys. 81, 865-942 (2009).
[168] S. Vinjanampathy and J. Anders, "Quantum thermodynamics," arXiv ,
1508.06099 (2015).
[169] J. Millen and A. Xuereb, "Perspective on quantum thermodynamics," New
J. Phys. 18, 011002 (2016).
[170] B. L. Schumaker, "Quantum mechanical pure states with gaussian wave
functions," Phys. Rep. 135, 317-408 (1971).
[171] S. Olivares, "Quantum optics in the phase space: A tutorial on gaussian
states," Eur. Phys. J. Special Topics 203, 3-24 (2012).