| 研究生: |
葉治銘 Yeh, Chih-ming |
|---|---|
| 論文名稱: |
鋼筋混凝土房屋構架在高溫中、後之行為研究─普通混凝土與自充填混凝土外柱接頭之行為 Behavior of Reinforced Concrete Building Frames Subjected to Elevated Temperature ─ Behavior of Exterior Joint Made of Ordinary and Self-Compacting Concrete |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 性能設計 、殘餘強度 、高溫 、混凝土 、外柱接頭 、火災 |
| 外文關鍵詞: | exterior joint, fire, elevated temperature, reinforced concrete, performance-based design, residual strength |
| 相關次數: | 點閱:97 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前鋼筋混凝土仍為建築材料之主體,由於火災是建築物損害的一大因素,因此鋼筋混凝土結構物受火害的相關研究相當的重要。本研究之目的在探討外柱接頭於高溫中、後之溫度變化及變形。
本研究使用普通混凝土(NC)及自充填混凝土(SCC)兩種材料,各製作三支試體,分別命名為NC4、NC5及NC6與SCC4、SCC5及SCC6,本論文是針對NC5、SCC4與SCC5試體的外柱接頭行為進行探討,並利用ANSYS套裝軟體建立電腦模型,以與實驗值相互印證。主要研究成果如下:
1.依高溫測試結果,NC5與SCC5試體的外柱接頭內部上下斷面中心處溫差不大,顯示接頭內部的上下熱傳遞情形不明顯。在接頭背部以及靠近邊梁和長梁處的溫度與接頭中心的溫度差距不大。ANSYS模擬的溫度分佈與實驗值接近,證明本文採用的熱學參數應屬合理。
2.試體受熱60分鐘內,外柱接頭轉動角大致上為先順時針再逆時針轉動,至關火期間內,接頭順時針轉動。試驗開始400分鐘時,接頭開始微幅的震盪直至不再變化,最終皆停在順時針方向。
3.殘餘強度測試中,NC5試體及SCC4試體的外柱接頭受梁載重的影響下,轉動方向皆為順時針方向且有相似的變化趨勢。
The reinforced concrete is currently the main body of the constructional materials, and the fire is a major factor which causes building damaged. Therefore, the research of the reinforced concrete structures under fire is an important issue. The objective of this research is to study the behavior of exterior joint under elevated temperature test.
We used two kinds of materials for the six specimens, ordinary concrete (NC)and self-compacting concrete (SCC), namely specimen NC4, NC5, NC6, SCC4, SCC5, and SCC6, respectively. Specimens NC5, SCC5, and SCC4 were tested in this study. The ANSYS software was used to model the specimen.
Main research results are as follows:
1.During the heating stage, the center temperature of exterior joint was very close to those at top and bottom of joint, which demonstrated that the internal heat transfer is not significant. The temperature of concrete near the back part of joint, the longitudinal beam, and spandrel beam was close to that at the center of joint. The temperature predicted using ANSYS software closely related to the measured data.
2.During the first 60 minutes in the heating period, the exterior joint was in clockwise and then followed by anti-clockwise rotation. Following the turned-off of fire, the rotation of joint was in clockwise direction. Some residual clockwise rotation was observed at the end of test.
3.In the residual strength test, the rotation of exterior joints’ in NC5 and SCC4 specimens were clockwise due to beam load. The variation of the rotation of both specimens was similar.
1.Kodur, V. K. R., and Sultan, M. A.,“Effect of Temperature on Thermal Properties of High-Strength Concrete,”Journal of Materials in Civil Engineering, ASCE, Vol. 15, No. 2, April 2003, pp. 101-107
2.Persson,B.,“Fire Resistance of Self-Compacting Concrete,SCC,”Materials and Sturctures,Vol.37,November 2004,pp.575-584
3.Noumowe,A.;Carre,H.;Daoud,A.;and Toutanji,H.,“High-Strength Self- Compacting Concrete Exposed to Fire Test,”Journal of Materials in Civil Engineering,ASCE,Vol.18,No.6,December 2006,pp.754-758
4.Kosmas,K.S.,“Mechanical Characteristics of Self-Consolidating Concretes Exposed to Elevated Temperatures,”Journal of Materials in Civil Engineering,ASCE,Vol.19,No.8,August 2007,pp.648-654
5.Unluoglu,E.;Topcu,I.B.;and Yalaman,B.,“Concrete cover effect on reinforced concrete bars exposed to high temperatures,”Construction and Building Materials, Vol. 21, 2007, pp.1155-1160
6.Xiao,J.Z.;Li,J;and Huang,Z.F.,“Fire Response of High-Performance Concrete Frames and Their Post-Fire Seismic Performance,”ACI Structural Journal,September-October 2008,pp.531-540
7.European Committee,“ Eurocode2 : Design of concrete structures - Part 1-2 : General rules - Structural fire design,”ENV 1992-1-2:1995
8.Ellingwood, B., and Shaver, J. R.,“ Effects of Fire Reinforced Concrete Members,”Journal of the Structural Division, ASCE, Vol. 106, No. ST11, November 1980, pp. 2151-2166
9.ACI Committee 216,“ Guide for Determining the Fire Endurance of Concrete Elements,”American Concrete Institute, 1994
10.Lie, T. T., and Barbaros, C.,“ Method to Calculate the Fire Resistance of Circular Reinforced Concrete Columns,”ACI Materials Journal, Vol. 88, No. 1, January-February 1991, pp. 84-91
11.Anderberg Y.,“Spalling Phenomena of HPC and OC,”NIST Workshop on Fire Performance of High Strength Concrete February 13-14, 1997
12.Hertz, K.D.,“Limits of spalling of fire-exposed concrete,”Journal of Fire Safety, Vol. 38, 2003, pp.103-116
13.Arioz,O.,“Effects of elevated temperatures on properties of concrete,” Fire Safety Journal, Vol.42 ,2007, pp.516-522
14.張朝輝,ANSYS熱分析教程與實例解析,中國鐵道出版社,北京 (2007)
15.博嘉科技,有限元分析軟件-ANSYS融會與貫通,中國水利水電出版社,北京 (2002)
16.CEB-FIP,“Design of Concrete Structure for Fire Resistance,”Bulletin D’Information, N。 145, 1982
17.商慧賢 , 「鋼筋混凝土短梁在火害中破壞載重之歷時分析」 ,碩士論文,國立成功大學土木工程研究所,台南 (2005)
18.楊毅凡 , 「鋼筋混凝土梁柱複合構件承受高溫之行為研究 ─ 梁柱接頭之承力行為」 ,碩士論文,國立成功大學土木工程研究所,台南 (2007)
19.何欣宜 , 「鋼筋混凝土梁柱複合構件於高溫中、後之行為研究 ─ 梁柱接頭之承力行為」 ,碩士論文,國立成功大學土木工程研究所,台南 (2008)