簡易檢索 / 詳目顯示

研究生: 黃國源
Huang, Guo-Yuan
論文名稱: 翼前緣突節對水平軸式風力機葉片性能之研究
The Study of Leading Edge Protuberances on Blade Performance of Horizontal Axis Wind Turbine
指導教授: 夏育群
Shiah, Yui-Chuin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 115
中文關鍵詞: 水平軸式風力機翼前緣突節風洞實驗
外文關鍵詞: HAWT, Leading edge protuberances, Wind tunnel experiment
相關次數: 點閱:162下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用實驗探討翼前緣突節對變速型水平軸式風力機葉片性能之失速特性影響。葉片模型使用SD8000翼型為基礎並定義不同參數之突節振幅與波長進行比較。依照不同測試條件將實驗模型區分為全翼展及葉片轉件並透過風洞實驗來量測全翼展模型之升阻力曲線及葉片轉件功率、扭矩之性能曲線進而分析不同振幅與波長之翼前緣突節和葉片轉件的相互關係。從實驗結果發現,翼前緣突節較無突節模型能改善葉片高攻角失速之特性。其結果對於變速型風機因葉片開始轉動時失速所造成之能量損耗也有所改善。翼前緣突節之振幅參數影響較劇,受到葉片實度(solidity)影響,大振幅突節之特性曲線趨於平緩,對於失速區的效能提升較不顯著。在此研究中,在失速區段之性能表現由小振幅之翼前緣突節為佳。

    In this study, the research is focused on the wind tunnel experiment of leading edge protuberances on blades performance at the stall region of small-scale horizontal axis wind turbine (HAWT) with variable rotational speed.The airfoil of all test model based on the SD8000 profiles with smooth (baseline) leading edge for comparison with the distinct definition of amplitude and wavelength of sinusoidal leading edge. The experiment was performed on the full-span models to get the coefficient of lift-drag ratio. Along with the full-span models, rotor blade models were also tested separately and the data for blade performance were evaluated.For all of the test model, the results indicated that the improvement of the stall effect of leading edge protuberances is significant with smaller amplitude for comparison with the baseline model. The curve of sin3 (A004,W0145) has higher C_p than other rotor models at the lower tip speed ratio between TSR= 3 ~4. Due to the effect of solidity, the larger amplitude produced a broad and flat curve means that the C_p is lower than others.

    CONTENTS ABSTRACT IN CHINESE i ABSTRACT ii ACKNOWLEDGEMENT iii CONTENTS v LIST OF TABLES vii LIST OF FIGURES viii NOMENCLATURE xiii CHAPTER Ⅰ INTRODUCTION 1 1.1 Background 1 1.1.1 Introduction of Wind Turbine 2 1.1.2 Historical Description of Leading Edge Protuberances11 1.1.3 Literature Review 13 1.2 Motivation and Objectives 27 CHAPTER Ⅱ GEOMETRY DESIGN AND DIMENSIONAL ANALYSIS 29 2.1 Airfoil Characteristics 29 2.1.1 Dimensional analysis and Non-dimensional parameters 30 2.1.2 Airfoil Selection 32 2.2 Sinusoidal Leading Edge geometry design 35 2.2.1 Full-span airfoil geometry 36 2.2.2 Rotor blades geometry 40 CHAPTER Ⅲ EXPERIMENTAL ARRANGEMENT 44 3.1 Experimental Apparatus 44 3.1.1 Subsonic Low Speed Wind Tunnel 45 3.1.2 Pitot Static Tube And Pressure Transducer 46 3.2 Force Measurement System 48 3.2.1 Analog/Digital (A/D) Converter and NI-DAQ Card 49 3.2.2 Six-Component External Strain Gauge Balance 49 3.2.3 AOA-Adjusting Mechanism 51 3.3 Test Models 52 3.3.1 Full-Span Models 52 3.3.2 Rotor Blade Models 53 3.4 Uncertainty Analysis 54 3.5 ABRI Environment Wind Tunnel 57 3.5.1 Performance Test Equipment 60 3.6 Experimental Procedure 64 3.6.1 Force Measurement of Full-span Models 65 3.6.2 Performance Test of Rotor Models 68 CHAPTER IV RESULTS AND DISCUSSION 71 4.1 Comparison of Experimental Models 71 4.1.1 Basic Measurement of Lift and Drag Coefficient of full-span models 72 4.1.2 Performance Test Results of Rotor Models 86 CHAPTER V CONCLUDING REMARKS 111 REFERENCES 114

    [1]B.E., "Wind turbines Part 2: Design requirements for small wind turbines", British Standards Institution , UK, 61400-2, (2006).
    [2]K.J.M. D. M. Bushnell, "Drag reduction in nature", Annual Review of Fluid Mechanics ,Vol. 23, P.65-79 ,(1991).
    [3]N.A.C.C. David J. Balding, Garrett M. Fitzmaurice,, "Random Data Analysis and Measurement Procedures",Fourth Edition, A JOHN WILEY & SONS, INC., PUBLICATION,USA,P.45-164,(2001).
    [4]J.L. E. Guerreiro, J.M. M. Sousa,"Low-Reynolds-Number Effects in Passive Stall Control Using Sinusoidal Leading Edges",AIAA Journal ,Vol.2 ,P.461-469 ,(2012).
    [5]G.E. Erickson, "High Angle of Attack Aerodynamics", Fluid Mechanic, Vol.27 ,P.45-88, (1995).
    [6]F.E. Fish, P.W. Weber, M.M. Murray, L.E. Howle, "The tubercles on humpback whales' flippers: application of bio-inspired technology", Integr Comp Biol Vol.51, P. 203-213 ,(2011).
    [7]F.E .B. Fish, J. M. , "Hydrodynamic design of the humpback whale flipper", Journal of Morphology Vol.225 ,P.51–60 ,(1995).
    [8]R.F. Huang, H.W. Lee, "Turbulence Effect on Frequency Characteristics of Unsteady Motions in Wake of Wing", AIAA Journal Vol.38 ,1, P.87-94 ,(2000).
    [9]R.F. Huang, C.L. Lin, "Vortex shedding and shear-layer instability of wing at low-Reynolds numbers", AIAA Journal Vol.33. 8 ,P.1398-1403, (1995).
    [10]H. Johari, C.W. Henoch, D. Custodio, A. Levshin, "Effects of Leading-Edge Protuberances on Airfoil Performance", AIAA Journal Vol.45.11,P.2634-2642 (2007).
    [11]H.S. Kang, C. Meneveau, "Direct mechanical torque sensor for model wind turbines", Measurement Science and Technology Vol.21, P.10 (2010).
    [12]M.J.G.a.R.A.L. Manwell J.F., "Wind Energy Explained Theory, Design and Application", A JOHN WILEY & SONS, INC, USA, (2002).
    [13]J.J.G. MichaelS. Selig, Andy P. Broeren "Low-Speed-Airfoil-Data-V1", Department of Aeronautical and Astronautical Engineering,University of Illinois at Urbana-Champaign ,USA,P.286 (1995).
    [14]D.S. Miklosovic, M.M. Murray, L.E. Howle, "Experimental Evaluation of Sinusoidal Leading Edges", Journal of Aircraft,Vol.44 (4) ,P.1404-1408 ,(2007).
    [15]D.S. Miklosovic, M.M. Murray, L.E. Howle, F.E. Fish, "Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers", Physics of Fluids Vol.16 (5) P.39,(2004).
    [16]T. Muller," Biomimetics: Design by nature", National geographic Vol.213 (4) ,P.68 (2008).
    [17]M.G. Murray, Timothy; Fredriksson, David, "Effect of Leading Edge Tubercles on Marine Tidal Turbine Blades", APS Division of Fluid Dynamics Meeting Abstracts 1 ,(2010).
    [18]D.J. Pines, F. Bohorquez, "Challenges Facing Future Micro-Air-Vehicle Development", Journal of Aircraft Vol.43 (2) ,P.290-305 ,(2006).
    [19]W. Sagong, W.P. Jeon, H. Choi, "Hydrodynamic characteristics of the Sailfish (Istiophorus platypterus) and Swordfish (Xiphias gladius) in gliding postures at their cruise speeds", PLoS One Vol.8 (12) , (2013).
    [20]B. Thwaites, "Incompressible Aerodynamics Dover",New York ,(1960).
    [21]D.S. Tony Burton, Nick Jenkins, Ervin Bossanyi, "Wind Energy Handbook", Wind Energy Consultant, Carno, UK, (2001).
    [22]G.E. Torres, T.J. Mueller, "Low Aspect Ratio Aerodynamics at Low Reynolds Numbers", AIAA Journal Vol.42 (5) ,P.865-873,(2004).
    [23]E. van Nierop, S. Alben, M. Brenner, "How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model", Physical Review Letters Vol.100 (5) ,(2008).
    [24]Yi-Chung-Liu, "Investigation on Low-Reynolds Number Aerodynamic Charecteristics of Low-Aspect Ratio Thin Wings", Department of Aeronautics and Astronautics Dissertation for Doctor of Philosophy, National Cheng Kung Univeristy ,P.94, (2012).
    [25]R.-K. Zhang, V.D.J.-Z. Wu, "Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge", Wind Energy Vol.15 (3) ,P.407-424 ,(2012).
    [26]李信宏, "內政部建研所風洞實驗室設備簡介", 國立成功大學歸仁校區 ,P.2,(2012).

    下載圖示 校內:2016-08-22公開
    校外:2016-08-22公開
    QR CODE