簡易檢索 / 詳目顯示

研究生: 侯州逸
Hou, Jhou-Yi
論文名稱: 非破壞檢測法應用於研判土壤液化、地層掏空及地下遺址之研究
The Study on the Detection of Soil Liquefaction, Eroded Caves and Subsurface Ruins by Non-Destruction Techniques
指導教授: 李德河
Lee, Der-Her
共同指導教授: 吳建宏
Wu, Jian-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 213
中文關鍵詞: 非破壞檢測透地雷達地下遺構頻譜分析監測地層掏空土壤液化
外文關鍵詞: Non-destructive Testing, Ground Penetrating Radar, Subsurface Ruins, Monitoring, Eroded Caves, Soil Liquefaction, Resistivity Image Profiling, Spectral Analysis
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代推進,以文化資產豐富而成為直轄市的台南市,在文化遺跡保存上較其他地方更具重要性。台南自十七世紀起經歷了荷蘭、鄭氏、滿清與日治統治,其中皆留下許多重要的構造物,但隨著都市開發,大部分在地表上之構造物被拆除,只剩其地下部分留存於現址。本研究使用透地雷達進行地下遺址的調查,以透地雷達圖徵判釋與訊號頻譜分析等方式,判定地下遺構之所在及所用材料的種類,也藉由開挖試掘驗證了透地雷達在初步探測之適用性以及頻譜分析之準確性。
    其次,在2016年0206美濃地震時,台南市有多處產生土壤液化現象,土壤液化乃是地震力將原有沉積完好的地層加以擾動並使之噴出地表。因此土壤液化區受擾動的地層大多是地震時產生液化的位置,本研究乃以台南市在0206地震發生土壤液化的區域作為調查對象,進行透地雷達探測,由透地雷達的反射圖徵,可以明確地發現地層擾動的現象,再與現地噴砂紀錄比對,確定透地雷達應可用來判定地層是否曾經發生液化的良好探測設備。
    最後,台南鐵路地下化工程是近年來台南市最重大的公共工程,由於工程縱貫台南市,工程施工可能會造成臨地地層受擾動,因此本研究乃以毗鄰台南鐵路地下化工程的一段社區道路長約81公尺,自2019年6月到2020年5月之間定期進行社區道路鋪面下地層的透地雷達檢測,擬由累積長期探測結果監測毗鄰鐵路地下化工程的道路下方地層的變動。由於該社區道路鋪面於2019年11月發生明顯龜裂,參照2019年6月到2020年2月該處透地雷達圖徵,發現道路龜裂處下方的地層擾動範圍是逐月擴大,因此可以判定道路鋪面之龜裂乃是因為其下方地層逐月受擾動掏空所致。

    With the advance of the times, Tainan City, which has become a municipality directly under the Central Government with abundant cultural assets, is more important in preserving cultural relics than elsewhere. Tainan has experienced the rule of the Netherlands, Zheng, Manchu and Japanese rulesince in the 17th century, all of which have left many important structures, but with urban development, most of the structures on the surface have been dismantled, leaving only the underground part of it remaining in the present site. This study uses the ground penetrating radar to investigate the underground sites, to determine the location of the subsurface ruins and the type of materials used by means of the patterns of the ground penetrating radar and the spectrum analysis of the signal, and also to verify the applicability of the ground penetrating radar in the preliminary detection and the accuracy of spectrum analysis.
    Secondly, this study also probes the ground disturbance caused by soil liquefaction. The Meinong Earthquake on February 6, 2016 caused soil liquefaction in many areas of Tainan City. In soil liquefaction, the seismic force disturbs the original deposited ground, and the liquefied soils spray out of the ground. Therefore, the disturbed grounds are located beneath the soil liquefaction ground patterns during the earthquake. In this study, the soil liquefaction occurred in Tainan City in the 0206 earthquake were taken as the study sites. The signal reflection pattern of GPR clearly shows the formation disturbance. Then, compared to the record of the on-site sand blow, the GPR is a good detection equipment to determine whether the ground has liquefied.
    This study evaluates the ground changes, including the eroded caves and ground disturbance, by the GPR. The study of eroded caves is firstly introduced. A 81-m long road in a community next to the construction site of the Tainan Underground Railway Project is selected. From June 2019 to June 2020, periodical GPR detections were conducted to detect the ground change below the pavement of community roads. Obvious road pavement cracking was visible in November 2019. The GPR pattern from June 2019 to February 2020 verified that the size of ground erosion beneath the pavement increases and is the main reason to crack the pavement.

    目錄 摘要 I 致謝 XI 目錄 XIII 表目錄 XVII 圖目錄 XIX 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機及方法 2 1-3 研究流程 3 1-4 研究大綱 5 第二章 文獻回顧 6 2-1 透地雷達之應用範圍 6 2-2 透地雷達之文獻回顧 8 2-2-1 土壤液化調查 8 2-2-2 地下遺址調查 11 2-2-3 掏空及孔洞調查 17 2-2-4 透地雷達頻譜之相關研究 19 2-3 地電阻之應用範圍 22 2-4 地電阻之相關研究 23 2-4-1 不同電極排列方式之解析度 23 2-4-2 地下遺址探測 25 2-4-3 地下空洞調查 27 第三章 非破壞檢測之基本理論與儀器介紹 29 3-1 透地雷達儀器及原理介紹 29 3-1-1 透地雷達儀器介紹: 29 3-1-2 透地雷達探測流程 33 3-1-3 透地雷達基本理論 39 3-1-4 介質之電磁特性 41 3-1-5 透地雷達探測深度概算法 44 3-1-6 解析度 46 3-1-7 資料處理 48 3-1-8 透地雷達圖徵判讀 53 3-1-9 頻譜分析 56 3-2 地電阻儀器及原理介紹: 59 3-2-1 地電阻儀器介紹 59 3-2-2 施作輔助工具 62 3-2-3 地電阻基本理論 63 3-2-4 地質之導電度與電阻率 67 3-2-5 地層之電阻率與電流流線 69 3-2-6 各種電極排列法介紹 75 3-2-7 現地施作之原理 78 3-2-8 現地施作之注意事項 80 3-2-9 正、反模擬法介紹 81 3-2-10 資料修正設定 84 第四章 資料分析與研究方法 86 4-1 透地雷達訊號分析方法 86 4-1-1 RADAN 7軟體之圖徵處理 86 4-1-2 頻譜分析之運算工具Matlab 88 第五章 現地探測規劃與結果 90 5-1 台南市安平區石門國小荷蘭遺構 90 5-1-1 研究區域介紹 92 5-1-2 非破壞性檢測之測線規劃與施作 93 5-1-3 透地雷達檢測之分析結果 97 5-1-4 地電阻檢測之分析結果 100 5-1-5 透地雷達檢測之頻譜分析 102 5-1-6 綜合結果 103 5-2 台灣府城東門段城垣遺構 106 5-2-1 研究區域介紹 108 5-2-2 透地雷達檢測之測線規劃與施作 110 5-2-3 透地雷達檢測之比對結果 113 5-2-4 透地雷達檢測之頻譜分析 117 5-2-5 綜合結果 123 5-3 台南市安南區溪頂里及新化區北勢里土壤液化檢測 125 5-3-1 研究區域介紹 126 5-3-2 透地雷達之測線規劃與施作 131 5-3-3 透地雷達之成果展現 134 5-3-4 透地雷達成果之頻譜分析 143 5-3-5 綜合結果 155 5-4 台南市北區某社區道路地層掏空檢測 156 5-4-1 研究區域介紹 157 5-4-2 非破壞性檢測之測線規劃與施作 158 5-4-3 透地雷達的監測成果與分析 162 5-4-4 地電阻的監測成果與分析 171 5-4-5 透地雷達檢測之頻譜分析 173 5-4-6 綜合結果 176 第六章 結論與建議 181 6-1 結論 181 6-2 建議 182 參考文獻 184 附錄一 透地雷達現地探測資料 192 附錄(A)-台南市安平區石門國小完整測線圖 192 附錄(B)-台灣府城東門段城垣遺跡完整測線圖 196 附錄(C)-台南市安南區溪頂里完整測線圖 202 附錄(D)-台南市新化區北勢里完整測線圖 202 附錄(E)-台南市北區某社區完整測線圖 204 附錄二 地電阻現地探測資料 210 附錄(A)-台南市安平區石門國小完整測線圖 210 附錄(B)-台南市北區某社區完整測線圖 211

    (1) 中央研究院人文社會科學研究中心,「台南市百年歷史地圖疊合系統」,「http://gissrv4.sinica.edu.tw/gis/tainan.aspx」。
    (2) 中華大學土木工程學系/結構安全評估與非破壞性檢測實驗室,「http://web.chu.edu.tw/~ccw/」。
    (3) 尤仁弘,「應用地電阻影像法於壩體潛在滲漏調查之研究」,國立交通大學土木工程研究所碩士論文,2005。
    (4) 王惠濂,「探地雷達目的體物理模擬研究結果」,中國地質大學學報,第18卷,第3期,266-284頁,1993。
    (5) 古志生、馬正明、李德河及吳建宏,「美濃地震後台南液化區初步調查及潛在災害區處理對策」,地工技術,No.148,P59~70,2016。
    (6) 李心平,「0206美濃地震災害概況」,台南市105年度災害防救研討會,台南,2016。
    (7) 周翰臨,「非貫入式電極改善地電阻法探測地下管線與地層之研究」,國立成功大學土木工程研究所碩士論文,台南,2014。
    (8) 祁松明,「地質雷達在隧道內的探測」,地球科學-中國地質大學學報,第18卷,第3期,第352-357頁,1993。
    (9) 邱君豪,透地雷達在大地工程上之初步研究」,國立成功大學土木工程研究所碩士論文,台南,1997。
    (10) 柯永彥,「訊號處理在大地工程上的運用」,授課講義,台南,2019。
    (11) 段偉宗,「併合二維、三維地電阻影像法及透地雷達法應用於管線及估計電石渣總量上之研究」,國地中央大學地球物理研究所碩士論文,桃園,2000。
    (12) 夏語堯,「透地雷達應用於地下古蹟調查及判釋」,國立成功大學土木工程研究所碩士論文,台南,2018。
    (13) 張均仰,「透地雷達於古蹟探測之應用」,國立成功大學土木工程研究所碩士論文,台南,2004。
    (14) 曹正宇,「併合地球物理法在断層及管線之研究」,國立中央大學地球物理研究所碩士論文,1997。
    (15) 梅興泰、鄭富書、蔡道賜,「地電阻影像剖面法對非均質地下實體之模擬分析」,技術學刊,第二十一卷,第四期,第369-382頁,2006。
    (16) 許朝景,「透地雷達於大地環境調查之應用」,國立成功大學土木工程研究所碩士論文,台南,2000。
    (17) 陳亮宇,「非破壞性檢測法應用在地下遺址及構造物檢傷之研究」,國立成功大學土木工程研究所碩士論文,台南,2019。
    (18) 陳澤承,「由波速的量測改善透地雷達應用於古蹟遺址的探測之效益」,國立成功大學土木工程研究所碩士論文,台南,2013。
    (19) 黃復為,「透地雷達探測道路下孔洞之研究」,國立台北科技大學土木與防災研究所碩士論文,2015。
    (20) 楊炫智、盧志杰及游騰瑞,「美濃地震台南地區 土壤液化災害與因應對策」,技師期刊,2017。
    (21) 楊濬豪,「透地雷達應用於木結構裂損檢測及地下管線判釋之研究」,國立成功大學土木工程研究所碩士論文,台南,2017。
    (22) 董彥閔,「地電阻影像法於古蹟遺址探測與大地環境應用之研究」,國立成功大學土木工程研究所碩士論文,台南,2010。
    (23) 詹伯望,「半月沉江話府城」,台灣建築與文化資產出版社,2006。
    (24) 褚耀龍,「應用透地雷達法於地下管線定位-蘆洲地區案例探討」,中華大學土木與工程資訊研究所碩士論文,2009。
    (25) 劉大魁,「GPR與熱影像技術於大地工程之應用研究」,國立成功大學土木研究所碩士論文,台南,2002。
    (26) 蔡宗原,「透地雷達訊號頻譜分析應用於地下構造物材料判釋之研究」,國立成功大學土木工程研究所碩士論文,台南,2016。
    (27) 蔣元樞,「重修臺郡各建築圖說」,國立故宮博物院出版,2007。
    (28) 賴新龍,「非破壞檢測技術應用於淺層地工構造物之調查」,國立成功大學土木工程研究所博士論文,台南2013。
    (29) 羅經書,「透地雷達應用於管線與地層調查之研究」,國立成功大學土木工程研究所碩士論文,台南,1998。
    (30) Advanced Geosciences Inc., Instruction manual for EarthImager 2D. Austin. TX, USA, 2008.
    (31) Al-Shukri H.J. and Mahdi H.H., "Three-Dimensional Imaging of Earthquake induced Liquefaction Features with Ground Penetrating Radar Near Marianna, Arkansas", Seismological Research Letters Volume 77, 2006.
    (32) Arulanandan, K, and Smith, S. S., “Electrical Dispersion in Relation to Soil Structure,” Journal of Soil Mechanics & Foundations Div, volume 99, p. 1113-33, 1973.
    (33) Bagaloni, V.N., Perdomo, S., Ainchil, J., “Geoelectric and magnetic surveys at La Libertad archaeological site (San Cayetano County, Buenos Aires Province, Argentina): A transdisciplinary approach”, Quaternary International Volume 245, Issue 1, Pages 13-24, 29 November 2011.
    (34) Beres, M. and Haeni, F.P., “Application of Ground Penetrating Radar Methods in Hydrogeologic Studies”, Ground Water, Vol.29, No.3, pp.375-386,1991.
    (35) Bray, J. D., and Stewart, J. P. "Chapter 8: Damage patterns and foundation performance in Adapazari. Kocaeli, Turkey Earthquake of August 17, 1999 Reconnaissance Report, Youd, T. L., Bardet, J. P., and Bray, J. D. eds., Earthquake Spectra", Supplement A to Vol. 16, 163-189, 2000.
    (36) Burger, H.R., “Exploration Gcophysics of the Shallow Subsurface,” Prentice Hall, New Jersey, USA, 1992.
    (37) Clarebout, J.F., and Muir, F., “Robust modeling with erratic data,” Geophysics, Vol.38, No.5, pp.826-844, 1973.
    (38) Constable, S.C., Parker, R.L., and Constable, C.G., “Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data,” Geophysics, Vol.52, No.3, pp.289-300, 1987.
    (39) Dahlin T. and Zhou B., “A numerical comparison of 2D resistivity imaging with 10 electrode arrays”, Geophysical Prospecting, Volume 52, Issue 5, p. 379 – 398, 2004.
    (40) Daniels D.J., “Ground Penetrating Radar 2nd”, institution of Engineering and1Technology, 1–4.ISBN978-0-86341-360-5, 2004.
    (41) Davis, J. L. and Annan, A. P., “Ground‐penetrating radar for high‐resolution mapping of soil and rock stratigraphy”, Geophysical Prospecting, Volume37, Issue5, Pages 531-551, July 1989.
    (42) Edwards, L.S., “A modified pseudo-section for resistivity and induced polarization,” Geophysics, Vol.42, No.5, 99.1020-1036, 1977.
    (43) Geophysical Survey Systems Inc., RADAN for Windows Version7 user’s Manual, USA, 1-176, 2014b.
    (44) Geophysical Survey Systems Inc., SIR System-20 User's Manual,USA, 2014.
    (45) Giles, C.L., and Wild, W.J., "Fresnel reflection and transmission at a planar boundary from media of equal refractive indices, " Vol. 40, No. 3, 210–212, 1982.
    (46) Giles, C.L., and Wild, W.J., "Fresnel reflection and transmission at a planar
    (47) Groot-Headlin, C., and Constable, S., “Occam’s inversion to generate smooth two-dimensional models from magneto telluric data,” Geophysics, Vol.55, No.12, pp.1613-1624, 1990.
    (48) Guha,S., Kruse,S.E., Wright, E.E.and Kruse,U.E., “ Spectral analysis of ground penetrating radar response to thin sedimentary layers” , Geophysical Research Letters, Vol.32, Issue . 23, 2005.
    (49) Ho, K.C., Gader, P.D. and Wilson, J.N., “Improving Landmine Detection Using Frequency Domain Features from Ground Penetrating Radar,” Geoscience and Remote Sensing Symposium, Vol.3, pp.1617-1620,2004.
    (50) Hubbert, M.K., “The theory of ground-water motion,” Journal of Geology, Vol.48, No.8, pp.785-994, 1940.
    (51) Inman, J.R., “Resistivity inversion with ridge regression,” Geophysics, Vol.40, No.5, pp.798-817, 1975.
    (52) Iskander, M.F., “Electromagnetic Fields and Waves”, Prentice Hall, U.S.A., 1992.
    (53) Jol H. M., "Ground Penetrating Radar Theory and Applications,”2009.
    (54) Kearey P. and Brooks M., "An Introduction to Geophysical Exploration”, 1984.
    (55) Leopold, M. , Gannaway, E. , Jörg Völkel , Haas, F. ,Becht, M., Heckmann T., Westphal M. and Zimmer G., “ Geophysical prospection of a bronze foundry on the southern slope of the acropolis at Athens, Greece ” , Archaeological Prospection, Volume18, Issue1, Pages 27-41 , January/March 2011.
    (56) Lines, L.R., and Treitel, S., “A review of least-squares inversion and its application to geophysical problems,” Geophysical Prospecting, Vol.32, pp.159-186, 1984.
    (57) Liu, L. and Li, Y., "Identification of liquefaction and deformation features using ground penetrating radar in the New Madrid seismic zone, USA", Journal of Applied Geophysics 47, P199–215, 2001.
    (58) Loke, M.H., “Tutorial:2-D and 3-D electrical imaging surveys”, Geotomo Software, Malaysia, pp.11-17, 2003.
    (59) Loke, M.H., Acworth, I., and Dahlin, T., “A comparison of smooth and blocky inversion method in 2D electrical imaging surveys,” Exploration Geophysics, Vol.34, No.3, pp.182-187, 2002.
    (60) Loke, M.H., and Barker, B.D., “Rapid least-squares inversion of apparent resistivity pseudo sections by a quasi-Newton method,” Geophysical Prospecting, Vol.44, pp.131-152, 1996.
    (61) Lowry, T., Allen, M.B., and Shive, P.N., “Singularity Removal: A Refinement of Resistivity Modeling Techniques”, Geophysics, pp.766-774, 1989.
    (62) Perez-Gracia, V., Gonzalez-Drigo, R. and Sala, R., “Ground-penetrating radar resolution in cultural heritage applications,” Near Surface Geophysics, 10(1), pp.77 – 87, 2015.
    (63) Sauer, M.C., Southwick, P.F., Spiegler, K.S. and Wyllie, M.R.J., “Electrical Conductance of Porous Plugs Ion Exchange Resin-Solution Systems”, industrial and engineering chemistry, Vol. 47, No. 10, October 1955.
    (64) Skolnik, M.I., “Introduction to Radar Systems” ,1980.
    (65) Taner, M.T., Koehler, F., and Sheriff, R.E., "Complex seismic trace analysis, "Geophysics, Vol. 44, No. 6, 1041-1063, 1979.
    (66) Telford, W.M., Geldart, L.P. and Sheriff, R.E., Applied Geophysics, Cambridge University Press, 1990.
    (67) Ungureanu, C., Priceputu, A., Bugea, A.L.and Chirică, A., “Use of electric resistivity tomography (ERT) for detecting underground voids on highly anthropized urban construction sites”, Procedia Engineering, Volume 209, Pages 202-209, 2017.
    (68) Van Nostrand, R.G. and Cook, K.L., Interpretation of Resistivity Data, United States Government Printing Office, Washington, 1966.
    (69) Wolke, R., and Schwetlick, H., “Iteratively reweighted least squares algorithms, convergence analysis, and numerical comparisoms,” SIAM journal on scientific and statistical computing, Vol.9, No.5, pp.-907-921, 1988.

    下載圖示 校內:2025-07-24公開
    校外:2025-07-24公開
    QR CODE