| 研究生: |
譚湘 Tan, Hsiang |
|---|---|
| 論文名稱: |
氧化鋅-鋅錫氧化物核-殼奈米線陣列應用於鋰離子電池負極之研究 Fabrication of ZnO@ZnSnO3 Core-Shell Nanowire Arrays as Negative Electrodes for Lithium Ion Batteries |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 鋰離子電池 、氧化鋅 、鋅錫氧化物 、無黏結劑電極 |
| 外文關鍵詞: | Lithium ion batteries, ZnO, ZnSnO3, binder-free electrode |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以化學浴法於碳布上製備氧化鋅奈米線陣列,並利用水熱法沉積鋅錫氧化物殼層結構,成功合成出氧化鋅-鋅錫氧化物核-殼奈米線陣列,並應用於鋰離子電池之無黏結劑負極。由掃描式及穿透式電子顯微鏡分析得知氧化鋅奈米線陣列的直徑及長度分別約為50 nm和1 μm,鋅錫氧化物殼層結構則是由直徑約6~14 nm之鋅錫氧化物顆粒組成,且殼層厚度約為15 nm。由X光繞射儀與穿透式電子顯微鏡分析得知所製備的鋅錫氧化物為ZnSnO3。電性測量方面,鋅錫氧化物殼層明顯改善氧化鋅奈米線陣列的電性表現。相較於氧化鋅奈米線陣列電極在200 mA/g及2000 mA/g 的充放電速率下分別具有344及90 mAh/g的電容量,氧化鋅-鋅錫氧化物核-殼奈米線陣列電極則具有1108及435 mAh/g的電容量。由電化學阻抗分析得知氧化鋅-鋅錫氧化物核-殼奈米線陣列擁有較低的電荷轉移阻力及較高的鋰離子擴散係數。以200 mA/g之充放電速率進行穩定性測試,第一圈庫倫效率由氧化鋅奈米線陣列電極之56%提升至化鋅-鋅錫氧化物核-殼奈米線陣列電極之67%。且反覆充放電120次後,加了鋅錫氧化物殼層的電容量由672 mAh/g提升至864 mAh/g,並具有近100%的維持率。由前述可知,本研究成功藉由鋅錫氧化物殼層結構改善氧化鋅奈米線的電性表現。所製備的氧化鋅-鋅錫氧化物核-殼奈米線陣列在高充放電速率下具備高電容特性,且穩定性佳。
ZnO@ZnSnO3 core-shell nanowire array has been successfully prepared by first coating ZnO NW on the surface of carbon cloth, followed by hydrothermal synthesizing the protective layer composed of ZnSnO3 quantum dots. When evaluated directly as binder-free anode for lithium-ion batteries, the resultant ZnO@ZnSnO3 core-shell nanowire array electrodes exhibit excellent lithium storage performance with an improved cycling performance (approximate 33 % capacity loss after 120 cycles at 200 mA g −1 with a capacity retention of 864 mA h g −1 at the 120th cycle), and better rate capability (a reversible capability of 1028, 829, 582, 545, and 388 mA h g−1 at 200, 500, 800, 1000, and 2000 mA g−1, respectively) compared to ZnO nanowire array electrode. The remarkably improved electrochemical performances could be attributed to the integration of ZnSnO3 quantum dots which could facilitate the electron transport and lithium ion diffusion, and buffer the volume change during repeated charge/discharge process effectively.
1. Crabtree, G., E. Kocs, and L. Trahey, The energy-storage frontier: Lithium-ion batteries and beyond. Mrs Bulletin, 2015. 40(12): p. 1067-1078.
2. Yuvaraj, S., R.K. Selvan, and Y.S. Lee, An overview of AB(2)O(4)- and A(2)BO(4)-structured negative electrodes for advanced Li-ion batteries. Rsc Advances, 2016. 6(26): p. 21448-21474.
3. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
4. von Sacken, U., et al., Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. Solid State Ionics, 1994. 69(3-4): p. 284-290.
5. Scrosati, B., Lithium rocking chair batteries: An old concept? Journal of The Electrochemical Society, 1992. 139(10): p. 2776-2781.
6. Lazzari, M. and B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes. Journal of The Electrochemical Society, 1980. 127(3): p. 773-774.
7. Nishi, Y., Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources, 2001. 100(1): p. 101-106.
8. Nishi, Y., The development of lithium ion secondary batteries. The Chemical Record, 2001. 1(5): p. 406-413.
9. Voelker, P., Trace Degradation Analysis of Lithium-Ion Battery Components. 2014.
10. Ji, L.W., et al., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 2011. 4(8): p. 2682-2699.
11. Dylla, A.G., G. Henkelman, and K.J. Stevenson, Lithium Insertion in Nanostructured TiO2(B) Architectures. Accounts of Chemical Research, 2013. 46(5): p. 1104-1112.
12. Malini, R., et al., Conversion reactions: a new pathway to realise energy in lithium-ion battery-review. Ionics, 2009. 15(3): p. 301-307.
13. Jamnik, J. and M. Gaberscek, Li Ion Migration at the Interfaces. Mrs Bulletin, 2009. 34(12): p. 942-948.
14. Zhou, G.M., F. Li, and H.M. Cheng, Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 2014. 7(4): p. 1307-1338.
15. Landi, B.J., et al., Carbon nanotubes for lithium ion batteries. Energy & Environmental Science, 2009. 2(6): p. 638-654.
16. Udom, I., et al., One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications. Materials Science in Semiconductor Processing, 2013. 16(6): p. 2070-2083.
17. Yi, G.C., C.R. Wang, and W.I. Park, ZnO nanorods: synthesis, characterization and applications. Semiconductor Science and Technology, 2005. 20(4): p. S22-S34.
18. Bao, J.M., et al., Broadband ZnO single-nanowire light-emitting diode. Nano Letters, 2006. 6(8): p. 1719-1722.
19. Zhang, Q.F., et al., ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials, 2009. 21(41): p. 4087-4108.
20. Maeda, K., et al., GaN : ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. Journal of the American Chemical Society, 2005. 127(23): p. 8286-8287.
21. Shen, G.Z., et al., Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process. Advanced Functional Materials, 2006. 16(3): p. 410-416.
22. Lu, M.P., et al., Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays. Nano Letters, 2009. 9(3): p. 1223-1227.
23. Donnay, J.D.H. and D. Harker, A new law of crystal morphology extending the law of bravais. American Mineralogist, 1937. 22(5): p. 446-467.
24. Hartman, P. and W. Perdok, On the relations between structure and morphology of crystals. III. Acta Crystallographica, 1955. 8(9): p. 525-529.
25. Zhong, W.Z., et al., GROWTH UNITS AND FORMATION MECHANISMS OF THE CRYSTALS UNDER HYDROTHERMAL CONDITIONS. Science in China Series B-Chemistry Life Sciences & Earth Sciences, 1994. 37(11): p. 1288-1297.
26. Li, W.-J., et al., Growth mechanism and growth habit of oxide crystals. Journal of crystal growth, 1999. 203(1): p. 186-196.
27. Baruah, S. and J. Dutta, Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 2009. 10(1): p. 18.
28. Kawano, T. and H. Imai, Nanoscale morphological design of ZnO crystals grown in aqueous solutions. Journal of the Ceramic Society of Japan, 2010. 118(1383): p. 969-976.
29. Reddy, M., G. Subba Rao, and B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical reviews, 2013. 113(7): p. 5364-5457.
30. Zhang, J., et al., High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries. Nanoscale, 2016. 8(44): p. 18578-18595.
31. Belliard, F., P.A. Connor, and J.T.S. Irvine, Novel tin oxide-based anodes for Li-ion batteries. Solid State Ionics, 2000. 135(1-4): p. 163-167.
32. Belliard, F. and J. Irvine, Electrochemical performance of ball-milled ZnO–SnO 2 systems as anodes in lithium-ion battery. Journal of Power Sources, 2001. 97: p. 219-222.
33. Chae, O.B., et al., Performance Improvement of Nano-Sized Zinc Oxide Electrode by Embedding in Carbon Matrix for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013. 160(1): p. A11-A14.
34. Yu, S.H., et al., Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes. Small, 2016. 12(16): p. 2146-2172.
35. Dall'Asta, V., et al., Influence of the ZnO nanoarchitecture on the electrochemical performances of binder-free anodes for Li storage. Journal of Solid State Chemistry, 2017. 247: p. 31-38.
36. Huang, X.H., et al., ZnO Microrod Arrays Grown on Copper Substrates as Anode Materials for Lithium Ion Batteries. International Journal of Electrochemical Science, 2012. 7(8): p. 6611-6621.
37. Yan, J., et al., Preparation and electrochemical performance of bramble-like ZnO array as anode materials for lithium-ion batteries. Journal of Nanoparticle Research, 2015. 17(1): p. 52.
38. Quartarone, E., et al., Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries. Journal of Power Sources, 2016. 320: p. 314-321.
39. Huang, X.H., et al., Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochimica Acta, 2011. 56(14): p. 4960-4965.
40. Wu, X.Y., et al., One-step synthesis of the nickel foam supported network-like ZnO nanoarchitectures assembled with ultrathin mesoporous nanosheets with improved lithium storage performance. Rsc Advances, 2015. 5(99): p. 81341-81347.
41. Ahmad, M., et al., Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. Journal of Materials Chemistry, 2011. 21(21): p. 7723-7729.
42. Yang, S.J., et al., Preparation and Exceptional Lithium Anodic Performance of Porous Carbon-Coated ZnO Quantum Dots Derived from a Metal-Organic Framework. Journal of the American Chemical Society, 2013. 135(20): p. 7394-7397.
43. Li, N., et al., ZnO Anchored on Vertically Aligned Graphene: Binder-Free Anode Materials for Lithium-Ion Batteries. Acs Applied Materials & Interfaces, 2014. 6(23): p. 20590-20596.
44. Zhang, G.H., et al., High-Performance and Ultra-Stable Lithium-Ion Batteries Based on MOF-Derived ZnO@ZnO Quantum Dots/C Core-Shell Nanorod Arrays on a Carbon Cloth Anode. Advanced Materials, 2015. 27(14): p. 2400-2405.
45. Xu, G.L., et al., PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energy, 2015. 18: p. 253-264.
46. Fang, J., et al., Synthesis and electrochemical performances of ZnO/MnO2 sea urchin-like sleeve array as anode materials for lithium-ion batteries. Electrochimica Acta, 2013. 112: p. 364-370.
47. Xie, Q.S., et al., Electrostatic Assembly of Sandwich-like Ag-C@ZnO-C@Ag-C Hybrid Hollow Microspheres with Excellent High-Rate Lithium Storage Properties. Acs Nano, 2016. 10(1): p. 1283-1291.
48. Joshi, B.N., et al., Flexible, Freestanding, and Binder-free SnOx-ZnO/Carbon Nanofiber Composites for Lithium Ion Battery Anodes. Acs Applied Materials & Interfaces, 2016. 8(14): p. 9446-9453.
49. Nomura, K., et al., All oxide transparent MISFET using high-k dielectrics gates. Microelectronic Engineering, 2004. 72(1-4): p. 294-298.
50. Lopes, O.F., et al., Zinc hydroxide/oxide and zinc hydroxy stannate photocatalysts as potential scaffolds for environmental remediation. New Journal of Chemistry, 2015. 39(6): p. 4624-4630.
51. Tan, B., et al., Zinc stannate (Zn2SnO4) dye-sensitized solar cells. Journal of the American Chemical Society, 2007. 129(14): p. 4162-+.
52. Stambolova, I., et al., Spray pyrolysis preparation and humidity sensing characteristics of spinel zinc stannate thin films. Journal of Solid State Chemistry, 1997. 128(2): p. 305-309.
53. Baruah, S. and J. Dutta, Zinc stannate nanostructures: hydrothermal synthesis. Science and Technology of Advanced Materials, 2011. 12(1): p. 18.
54. Palmer, G.B., K.R. Poeppelmeier, and T.O. Mason, Zn2-xSn1-xIn2xO4-delta: An indium-substituted spinel with transparent conducting properties. Journal of Solid State Chemistry, 1997. 134(1): p. 192-197.
55. Chen, H.Y., et al., Transmission electron microscopy study of pseudoperiodically twinned Zn2SnO4 nanowires. Journal of Physical Chemistry B, 2005. 109(7): p. 2573-2577.
56. Wang, C. and B.Q. Xu, Coprecipitation synthesis and optical absorption property of Zn2Ti (x) Sn1-x O-4 (0 a parts per thousand currency sign x a parts per thousand currency sign 1) solid solutions. Journal of Materials Science, 2009. 44(3): p. 919-925.
57. Fang, J., et al., Hydrothermal preparation and characterization of Zn2SnO4 particles. Materials Research Bulletin, 2001. 36(7-8): p. 1391-1397.
58. Junploy, P., et al., Photocatalytic degradation of methylene blue by Zn2SnO4-SnO2 system under UV visible radiation. Materials Science in Semiconductor Processing, 2017. 66: p. 56-61.
59. Bora, T., et al., Phase Transformation of Metastable ZnSnO3 Upon Thermal Decomposition by In-Situ Temperature-Dependent Raman Spectroscopy. Journal of the American Ceramic Society, 2015. 98(12): p. 4044-4049.
60. Zeng, J., et al., Transformation process and photocatalytic activities of hydrothermally synthesized Zn2SnO4 nanocrystals. Journal of Physical Chemistry C, 2008. 112(11): p. 4159-4167.
61. Zhang, Y.J., et al., Hydrothermal synthesis and characterization of single-crystalline zinc hydroxystannate microcubes. Journal of Crystal Growth, 2007. 308(1): p. 99-104.
62. Xu, J., et al., One-step hydrothermal synthesis and gas sensing property of ZnSnO 3 microparticles. Solid-State Electronics, 2006. 50(3): p. 504-507.
63. Ji, X.X., et al., Hydrothermal synthesis of novel Zn2SnO4 octahedron microstructures assembled with hexagon nanoplates. Journal of Alloys and Compounds, 2010. 503(2): p. L21-L25.
64. Han, F., et al., Selective Formation of Carbon-Coated, Metastable Amorphous ZnSnO3 Nanocubes Containing Mesopores for Use as High-Capacity Lithium-Ion Battery. Small, 2014. 10(13): p. 2637-2644.
65. Chen, Y.J., et al., Synthesis of ZnSnO3 mesocrystals from regular cube-like to sheet-like structures and their comparative electrochemical properties in Li-ion batteries. Journal of Materials Chemistry, 2012. 22(48): p. 25373-25379.
66. Luo, P., et al., Sandwich-like nanostructure of amorphous ZnSnO 3 encapsulated in carbon nanosheets for enhanced lithium storage. Electrochimica Acta, 2016. 219: p. 734-741.
67. Rong, A., et al., Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. Journal of Physical Chemistry B, 2006. 110(30): p. 14754-14760.
68. Zhao, Y., et al., Preparation of hollow Zn2SnO4 boxes for advanced lithium-ion batteries. Rsc Advances, 2013. 3(34): p. 14480-14485.
69. Wang, K., et al., Facile synthesis and performance of polypyrrole-coated hollow Zn2SnO4 boxes as anode materials for lithium-ion batteries. Ceramics International, 2014. 40(1): p. 2359-2364.
70. Zhao, Y., et al., Polyaniline(PANI) coated Zn2SnO4 cube as anode materials for lithium batteries. Polymer Testing, 2013. 32(8): p. 1582-1587.
71. Xie, Q.S., et al., Synthesis of amorphous ZnSnO3-C hollow microcubes as advanced anode materials for lithium ion batteries. Electrochimica Acta, 2014. 141: p. 374-383.
72. Qin, Y.L., et al., Controllable synthesis of cube-like ZnSnO3@TiO2 nanostructures as lithium ion battery anodes. Journal of Materials Chemistry A, 2015. 3(6): p. 2985-2990.
73. Chen, X.F., et al., Silver-modified hollow ZnSnO3 boxes as high capacity anode materials for Li-ion batteries. Materials Letters, 2015. 149: p. 33-36.
74. Ma, Y.T., et al., Synthesis of amorphous ZnSnO3 double-shell hollow microcubes as advanced anode materials for lithium ion batteries. Electrochimica Acta, 2015. 182: p. 327-333.
75. Wang, Y.K., et al., Fabrication of novel rugby-like ZnSnO3/reduced graphene oxide composites as a high-performance anode material for lithium-ion batteries. Materials Letters, 2016. 167: p. 222-225.
76. Wang, Y.K., et al., Self-assembled 3D ZnSnO3 hollow cubes@reduced graphene oxide aerogels as high capacity anode materials for lithium-ion batteries. Electrochimica Acta, 2016. 203: p. 84-90.
77. Hou, X., et al., Preparation and electrochemical characterization of Zn 2 SnO 4 as anode materials for lithium ion batteries. Solid State Ionics, 2010. 181(13): p. 631-634.
78. St John, S., I. Dutta, and A.P. Angelopoulos, Synthesis and Characterization of Electrocatalytically Active Platinum Atom Clusters and Monodisperse Single Crystals. Journal of Physical Chemistry C, 2010. 114(32): p. 13515-13525.
79. Kim, K., et al., Preparation and electrochemical properties of surface-charge-modified Zn2SnO4 nanoparticles as anodes for lithium-ion batteries. Electrochimica Acta, 2012. 76: p. 192-200.
80. Zhang, R.R., Y.Y. He, and L.Q. Xu, Controllable synthesis of hierarchical ZnSn(OH)(6) and Zn2SnO4 hollow nanospheres and their applications as anodes for lithium ion batteries. Journal of Materials Chemistry A, 2014. 2(42): p. 17979-17985.
81. Huang, H.J., et al., Preparation of hollow Zn2SnO4 boxes@C/graphene ternary composites with a triple buffering structure and their electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2014. 147: p. 201-208.
82. Song, W.T., et al., Facile synthesis of layered Zn2SnO4/graphene nanohybrid by a one-pot route and its application as high-performance anode for Li-ion batteries. Journal of Power Sources, 2013. 229: p. 6-11.
83. Zhao, Y., et al., Hollow Zn2SnO4 boxes wrapped with flexible graphene as anode materials for lithium batteries. Electrochimica Acta, 2014. 120: p. 128-132.
84. Wang, K., et al., Hydrothermal synthesis of flower-like Zn2SnO4 composites and their performance as anode materials for lithium-ion batteries. Ceramics International, 2014. 40(6): p. 8021-8025.
85. Yuvaraj, S., et al., In situ and ex situ carbon coated Zn2SnO4 nanoparticles as promising negative electrodes for Li-ion batteries. Rsc Advances, 2015. 5(82): p. 67210-67219.
86. Fu, Y.M., et al., Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor. Acs Applied Materials & Interfaces, 2015. 7(19): p. 10482-10490.
87. Wang, J.Z., et al., Large-Scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-Ion Batteries. Journal of Physical Chemistry C, 2011. 115(22): p. 11302-11305.
88. http://www.technoorg.hu/news-and-events/articles/high-resolution-scanning-electron-microscopy-1/.
89. https://www.materialsnet.com.tw/AD/ADImages/AAADDD/MC LM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf.
90. https://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/ regs/mpags/ex5/techniques/structural/tem/.
91. http://inano.au.dk/research/research-platforms/nanoanalysis/transmission-and-scanning-electron-microscopy/.
92. https://www.materialsnet.com.tw/AD/ADImages/AAADDD/ MCLM100/download/equipment/EM/FE-TEM/FE-TEM010.pdf.
93. http://ywcmatsci.yale.edu/xrd.
94. 林麗娟, X光繞射原理及其應用. 工業材料 86 期, 83年2月(X光材料分析技術與應用專題).
95. Butler, H.J., et al., Using Raman spectroscopy to characterize biological materials. Nat. Protocols, 2016. 11(4): p. 664-687.
96. http://www.princetoninstruments.com/spectroscopy/Raman.
97. http://labguide.com.tw/user/w016267551/uploads/1246937317.pdf.
98. Barsoukov, E., et al., Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy. Solid State Ionics, 2003. 161(1-2): p. 19-29.
99. Barsoukov, E. and J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. 2005: John Wiley & Sons.
100. Zhuang, Q.C., et al., Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries. Progress in Chemistry, 2010. 22(6): p. 1044-1057.
101. Guo, X., et al., Secondary growth synthesis of ZnSn(OH)(6) cube/Zn2SnO4 nanowire yolk-shell hierarchical structures with enhanced lithium ion storage properties. Crystengcomm, 2016. 18(35): p. 6608-6613.
102. Wang, J.Q., P. King, and R.A. Huggins, INVESTIGATIONS OF BINARY LITHIUM-ZINC, LITHIUM-CADMIUM AND LITHIUM-LEAD ALLOYS AS NEGATIVE ELECTRODES IN ORGANIC SOLVENT-BASED ELECTROLYTE. Solid State Ionics, 1986. 20(3): p. 185-189.
103. Wang, J.Q., I.D. Raistrick, and R.A. Huggins, BEHAVIOR OF SOME BINARY LITHIUM ALLOYS AS NEGATIVE ELECTRODES IN ORGANIC SOLVENT-BASED ELECTROLYTES. Journal of the Electrochemical Society, 1986. 133(3): p. 457-460.
104. Wang, C., et al., Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale, 2014. 6(10): p. 5351-5358.
105. Yu, H.L., et al., Three-dimensional hierarchical MoS2 nanoflake array/carbon cloth as high-performance flexible lithium-ion battery anodes. Journal of Materials Chemistry A, 2014. 2(13): p. 4551-4557.
106. Hou, X.J., et al., Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale, 2014. 6(15): p. 8858-8864.
107. Balogun, M.S., et al., Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. Journal of Power Sources, 2014. 272: p. 946-953.
108. Gao, L.N., et al., High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. Journal of Materials Chemistry A, 2013. 1(24): p. 7167-7173.
109. Huang, L.Y., et al., ZnO Nanorods Grown Directly on Copper Foil Substrate as a Binder-Free Anode for High Performance Lithium-Ion Batteries. International Journal of Electrochemical Science, 2016. 11(10): p. 8439-8446.
110. Quartarone, E., et al., Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries (vol 320, pg 314, 2016). Journal of Power Sources, 2016. 333: p. 254-254.
111. Luo, P., et al., Sandwich-like nanostructure of amorphous ZnSnO3 encapsulated in carbon nanosheets for enhanced lithium storage. Electrochimica Acta, 2016. 219: p. 734-741.
112. Duan, J.F., et al., Synthesis of amorphous ZnSnO3 hollow nanoboxes and their lithium storage properties. Materials Letters, 2014. 122: p. 261-264.
113. Zhao, Y., et al., Electrospun SnO2-ZnO nanofibers with improved electrochemical performance as anode materials for lithium-ion batteries. International Journal of Hydrogen Energy, 2015. 40(41): p. 14338-14344.
114. Wu, X., et al., One-step synthesis of the nickel foam supported network-like ZnO nanoarchitectures assembled with ultrathin mesoporous nanosheets with improved lithium storage performance. RSC Advances, 2015. 5(99): p. 81341-81347.
校內:2022-08-31公開