| 研究生: |
潘修任 Pan, Hsiu-Jen |
|---|---|
| 論文名稱: |
利用化學還原法製備奈米級無鉛銲錫材料研究 Synthesis of nanosized lead-free solder particles by chemical reduction method |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 化學還原法 、無鉛焊錫 、錫-銀-鋅 |
| 外文關鍵詞: | Chemical reduction method, lead-free solder alloy, Sn-3.5Ag-0.5Zn |
| 相關次數: | 點閱:90 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自工業革命以來,材料發展逐漸朝向輕、薄、短、小、易傳輸且無毒化、可回收再利用為重要考量。IC的發展趨勢為:接點數增加、訊號速度快、功率大幅上升及腳距縮小。伴隨著IC的發展趨勢,無鉛焊錫材料也因應構裝型態也必須朝向間距微小化、多腳化及薄型化的方向發展,才能滿足市場的需求。
本研究採用化學還原法(Chemical reduction method)來製備Sn-3.5Ag-0.5Zn無鉛焊錫合金。在常溫常壓下,使用硫酸錫、硝酸銀、硝酸鋅為前驅物,NaBH4當作還原劑來進行反應,並在反應過程中添加PVP作為保護劑,於反應完成後得到Sn-3.5Ag-0.5Zn合金的沉澱物。在經過清洗、過濾、乾燥等製程後,使用XRD進行結構鑑定,並在掃描式電子顯微鏡及穿透式電子顯微鏡下進行觀測,發現此方法可以成功地得到粒徑分佈在10至30nm的錫-銀-鋅合金;經由不同的條件,可以比較NaBH4及PVP添加量對形成的錫-銀-鋅合金所造成的影響並且探討反應機制的關係。實驗顯示NaBH4及PVP及溫度量化好的條件。
Since industrial revolution, the trend of material development gradually becomes lighter, thinner, shorter and smaller. Now portable, non-toxic, recyclable properties are the keys. The trend of IC development has innovated into more connecting spots, smaller lead pitch, better performance, faster signal amd smaller form factors, as well as free-lead solder meterial. With the growing environmental concern, the latter is getting more attention.
This research makes nano-sized Sn-3.5Ag-0.5Zn, lead-free solder alloy by using “Chemical Reduction Method”. Keu results are as follows. Under room temperature and atmospheric pressure, the Sn-3.5Ag-0.5Zn, lead-free solder alloy is synthesized by using SnSO4, AgNO3, Zn(NO3)2 as precursor and NaBH4 as reductant and PVP as protection agent during reaction. Through refining and processing of the Sn-3.5Ag-0.5Zn alloy first and then by cleaning, filtering and drying of the Sn-3.5Ag-0.5Zn precipitation, the alloy with sizes ranging from 10 to 30 nm can be obtained.
In addition, through comparing the different reactions of Sn-3.5Ag-0.5Zn alloy by adding different quantity of NaBH4 and PVP. the significance for which NaBH4, PVP and temperature interplay is described.
[1] 馮榮豐、陳錫添, "奈米工程概論(修訂二版)," 全華科技圖書股份有限公司, vol. 初版, 2008.
[2] 王建義, "奈米技術手冊 (精華版)," vol. 初版, ed: 全華圖書股份有限公司, 2005.
[3] 川合知二、工業技術研究院奈米科技研發中心。, "圖解奈米應用技術," 工研院奈米中心, vol. 初版, 2003.
[4] 陳光華、鄧金祥, "奈米薄膜技術與應用," 五南圖書出版社, vol. 初版, 2005.
[5] 林振華、陳玉心、王建義, "奈米科技全書(共四冊)-觀察篇、觀察分析法、IT應用篇、生化奈米應用技術篇," vol. 初版, 2005.
[6] 蔡信行、孫光中, "奈米科技導論 : 基本原理及應用," 新文京開發出版股份有限公司, vol. 初版, 2004.
[7] 馬振基, "奈米材料科技原理與運用," 全華圖書股份有限公司, vol. 初版, 2003.
[8] 林嘉鵬, "高分子微粒被覆金屬奈米殼層之研究," 國立成功大學化學工程研究所碩士論文, 2002年06月.
[9] C. Y. Lin, U. S. Mohanty, and J. H. Chou, "Synthesis and characterization of Sn-3.5Ag-XZn alloy nanoparticles by the chemical reduction method," Journal of Alloys and Compounds, vol. 472, pp. 281-285, Mar 2009.
[10] 吳仰鎧, "Sn-Zn 與Sn-Ag-Cu 系列無鉛銲錫之比熱量測與探討," 國立成功大學材料科學及工程學系碩士論文, 2007年06月.
[11] L. Y. Hsiao and J. G. Duh, "Synthesis and characterization of lead-free solders with Sn-3.5Ag-xCu (x=0.2, 0.5, 1.0) alloy nanoparticles by the chemical reduction method," Journal of the Electrochemical Society, vol. 152, pp. J105-J109, 2005.
[12] C. Y. Lin, J. H. Chou, Y. G. Lee, and U. S. Mohanty, "Preparation of Sn-3.5Ag nano-solder by supernatant process," Journal of Alloys and Compounds, vol. 470, pp. 328-331, Feb 2009.
[13] 王志榮, "Sn-9Zn-xAg 無鉛銲錫合金微觀組織及機械性質之電流效應," 國立成功大學材料科學與工程學系碩士論文, 2005年06月.
[14] H. Jiang, K. S. Moon, F. Hua, and C. P. Wong, "Synthesis and thermal and wetting properties of Tin/Silver alloy nanoparticles for low melting point lead-free solders," Chemistry of Materials, vol. 19, pp. 4482-4485, Sep 2007.
[15] 蔡淑惠, "合金奈米粒子的製備與應用," 國立成功大學化學研究所碩士論文, 2003年06月.
[16] 王世敏、許祖勛、傅晶, "奈米材料原理與製備," 五南出版社, vol. 初版, 2004.
[17] A. Shanaghi, A. S. Rouhaghdam, T. Shahrabi, and M. Aliofkhazraei, "Study of TiO2 nanoparticle coatings by the sol-gel method for corrosion protection," Materials Science, vol. 44, pp. 233-247, Mar 2008.
[18] W. Z. Shen, Z. J. Li, H. Wang, Y. H. Liu, Q. J. Guo, and Y. L. Zhang, "Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol-gel methods," Journal of Hazardous Materials, vol. 152, pp. 172-175, Mar 2008.
[19] 郭清癸、黃俊傑、牟中原, "金屬奈米粒子的製造," 物理雙月刊(廿三卷六期), 2001.
[20] L. Y. Hsiao and J. G. Duh, "Revealing the nucleation and growth mechanism of a novel solder developed from Sn-3.5Ag-0.5Cu nanoparticles by a chemical reduction method," Journal of ELECTRONIC MATERIALS, vol. 35, pp. 1755-1760, Sep 2006.
[21] M. T. Reetz and W. Helbig, "SIZE-SELECTIVE SYNTHESIS OF NANOSTRUCTURED TRANSITION-METAL CLUSTERS," Journal of the American Chemical Society, vol. 116, pp. 7401-7402, Aug 1994.
[22] R. A. Khaydarov, R. R. Khaydarov, O. Gapurova, Y. Estrin, and T. Scheper, "Electrochemical method for the synthesis of silver nanoparticles," Journal of Nanoparticle Research, vol. 11, pp. 1193-1200, Jul 2009.
[23] Y. C. Han, S. P. Li, X. Y. Wang, I. Bauer, and M. Z. Yin, "Sonochemical preparation of hydroxyapatite nanoparticles stabilized by glycosaminoglycans," Ultrasonics Sonochemistry, vol. 14, pp. 286-290, Mar 2007.
[24] M. Tsuji, K. Matsumoto, N. Miyamae, T. Tsuji, and X. Zhang, "Rapid preparation of silver nanorods and nanowires by a microwave-polyol method in the presence of Pt catalyst and polyvinylpyrrolidone," Crystal Growth & Design, vol. 7, pp. 311-320, Feb 2007.
[25] J. Li, H. Q. Fan, J. Chen, and L. J. Liu, "Synthesis and characterization of poly(vinyl pyrrolidone)-capped bismuth nanospheres," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 340, pp. 66-69, May 2009.
[26] M. M. Koebel, L. C. Jones, and G. A. Somorjai, "Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth," Journal of Nanoparticle Research, vol. 10, pp. 1063-1069, Aug 2008.
[27] M. Kanemaru, Y. Shiraishi, Y. Koga, and N. Toshima, "Calorimetric study on self-assembling of two kinds of monometallic nanoparticles in solution," Journal of Thermal Analysis and Calorimetry, vol. 81, pp. 523-527, Aug 2005.
[28] L. Ramajo, R. Parra, M. Reboredo, and M. Castro, "Preparation of amine coated silver nanoparticles using triethylenetetramine," Journal of Chemical Sciences, vol. 121, pp. 83-87, Jan 2009.
[29] A. R. Siekkinen, J. M. McLellan, J. Y. Chen, and Y. N. Xia, "Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide," Chemical Physics Letters, vol. 432, pp. 491-496, Dec 2006.
[30] K. D. Kim, D. N. Han, and H. T. Kim, "Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method," Chemical Engineering Journal, vol. 104, pp. 55-61, Nov 2004.
[31] A. K. Ganguli, A. Ganguly, and S. Vaidya, "Microemulsion-based synthesis of nanocrystalline materials," Chemical Society Reviews, vol. 39, pp. 474-485, 2010.
[32] M. D. Podesta, "Understanding the properties of matter " p. 340, 2002.
[33] 高濂、孫靜、劉陽橋, "奈米粉體的分散及表面改性," 五南圖書出版社, vol. 初版, 2005.
[34] Z. T. Zhang, B. Zhao, and L. M. Hu, "PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes," Journal of Solid State Chemistry, vol. 121, pp. 105-110, Jan 1996.
[35] H. S. Wang, X. L. Qiao, J. G. Chen, X. J. Wang, and S. Y. Ding, "Mechanisms of PVP in the preparation of silver nanoparticles," Materials Chemistry and Physics, vol. 94, pp. 449-453, Dec 2005.
[36] H. S. Wang, X. L. Qiao, J. G. Chen, and S. Y. Ding, "Preparation of silver nanoparticles by chemical reduction method," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 256, pp. 111-115, Apr 2005.
[37] 王鉦源, "以化學還原法製備奈米級銀鈀微粉," 國立成功大學化學工程研究所碩士論文, 2002年06月.
[38] 林育右, "以化學還原法合成導電性銅奈米微粉之研究," 國立成功大學化學工程研究所碩士論文, 2003年06月.
[39] 邱信凱, "鎳金合金奈米粒子之製備與特性研究," 國立成功大學化學工程學系碩士論文, 2005年06月.
[40] U. S. M. C.Y. Lin, J.H. Chou, "High temperature synthesis of Sn–3.5Ag–0.5Zn alloy nanoparticles by chemical reduction method," Journal of Alloys and Compounds 501, vol. 2010, 2010.