簡易檢索 / 詳目顯示

研究生: 蘇峻興
Su, Chun-Hsing
論文名稱: 製備含有奈米結構之混合太陽能電池及其特性研究
Fabrication and Characterization of Nanostructure Hybrid Solar Cells
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 80
中文關鍵詞: 有機太陽能電池奈米結構
外文關鍵詞: Organic solar cell, Nanostructure
相關次數: 點閱:121下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在傳統有機太陽能電池中加入奈米結構,希望藉由有機高分子材料施體與受體交界接面的增加,
    進而產生更多的激子藉以達到更良好的相分離效果,並給予一個固定擴散路徑使激子能夠順利的到達施體受體之交界接面,
    希望藉此路徑控制增加激子擴散至此交界面機率,並在此交界面利用施體與受體之最低未被佔據分子軌域之能階差克服激子之束縛能,
    期望能夠分離出更多的電子電洞對,產生更多短路電流藉此提升有機高分子之電池效率。
    在製作奈米結構方面,本研究嘗試使用熱奈米壓印技術,並開發出一種新式母模,藉由妥善條件控制已可使壓印之圖形轉移良好,
    此成果對於奈米結構應用於太陽能電池技術有著顯著之貢獻。
    經由奈米壓印所製作出含有奈米結構之雙層有機高分子太陽能電池元件之短路電流可從0.15顯著提升至1.08 mA/cm2,
    填充因子可由最低之0.25提升到0.55。

    The objective of this study is to fabricate ordered nanostructure organic solar cells by using thermal nanoimprinting technique.
    By using the technique, we are able to appropriately control the donor-accepter interfacial morphology.
    When the light is absorbed by the active layer of the organic semiconductor, a bounded electron-hole pairs can be generated, which is so called exciton.
    Because of the LUMO difference between the donor and acceptor, the excitons will separate when they diffuse across the donor-acceptor interface.
    We create a smooth, direct pathway to make sure that the excitons will reach the interface and then separate. This straight pathway let the charge carries transport to the electrode more effectively.
    We develop a new method of making silicon molds. It provides a low cost, highly efficient way to fabricate nanoimprinting molds.
    Because the thermal nanoimprinting condition is carefully monitored, there comes a significant improvement in the short-circuit current, fill factor, and the power efficiency.
    The current density rises from 0.15 to 1.08 mA/cm2, fill factor increases from the lowest level 0.25 to the highest 0.55.

    目 錄 摘 要 I ABSTRACT II 誌 謝 III 目 錄 IV 表目錄 V 圖目錄 VI 第一章 緒論 1 1-1前言 1 1-2能源需求與太陽能相關產業 2 1-3 研究動機 3 第二章 實驗原理 6 2-1無機太陽能電池簡介 6 2-2太陽能電池原理 7 2-2-2有機高分子太陽能電池之工作原理 13 2-2-3有機太陽能電池之特性分析 17 2-4 奈米壓印理論與簡介 21 2-5 含有奈米結構之高分子太陽能電池 24 第三章 實驗方法及製程步驟 26 3-1實驗材料 26 3-2元件製作流程 27 3-2-1 基本有機太陽能電池製程 27 3-2-2雙層元件的製作 29 3-2-3含有奈米結構之有機太陽能電池製作 30 3-4製作與量測設備 30 第四章 實驗結果與討論 32 4-1單層混合異質接面有機太陽能電池製程最佳化 32 4-2製作熱奈米壓印所需之母模 33 4-3 應用熱奈米壓印技術製備有機高分子太陽能電池 34 第五章 結果與討論 37 表目錄 表1- 1 太陽能電池產業(PV industry)之產業價值鍊 38 表2- 1 近年來世界上顯著之無機太陽能電池整體效率統計 42 表2- 2 近年來未經官方認證之太陽能電池效率整理 42 表2- 3塊狀異質接面有機太陽能電池不同施體受體比例組合整理 43 表2- 4 近年來有機高分子太陽能電池效率統計 43 表3- 1 ITO蝕刻製程步驟。 50 表3- 2 ITO清潔步驟。 50 表4- 1 經過量化後的矽壓印母模資料表 60 表4- 2 雙層元件之效率整理 72 表4- 3雙層混合元件之效率整理 74 圖目錄 圖1- 1 過去20年世界太陽能電池成長 38 圖1- 2 未來世界能源使用種類預估 39 圖1- 3 未來太陽能電池發展趨勢 39 圖2- 1 利用滾壓法連續大量製造有機電子元件之概念圖 40 圖2- 2 過去30年太陽能電池的發表數量圖(Source Scopus) 40 圖2- 3 有機共軛高分子示意圖 40 圖2- 4 有機共軛高分子載子非定域化遷移示意圖 41 圖2- 5 原子鍵結成分子時形成能帶(energy band)結構示意圖 41 圖2- 6 分子結構 (1) Metal phthalocyanines (M = Cu, Zn, Sn(II)) 41 圖2- 8 激子擴散示意圖 44 圖2- 9 (a)理想之相分離示意圖 (b)具有死路及孤島的相分離示意圖 45 圖2- 10 有機太陽能電池運作機制示意圖 45 圖2- 11 太陽光譜 46 圖2- 12 空氣質量 46 圖2- 13 太陽能電池等效電路圖。(a)理想的太陽能電池,(b)實際的太陽能電池。其中RP為並聯電阻、RS為串聯電阻。 47 圖2- 14 (a)理想的太陽能電池。實際的太陽能電池,擁有(b)較小的並聯電阻,並忽略串聯電阻、(c)無窮大的並聯電阻和大的串聯電阻。 47 圖2- 15 理想和實際的太陽能電池之IV曲線圖 47 圖2- 16 奈米壓印轉印流程示意圖 48 圖2- 17 有機高分子太陽能電池結構 48 圖3- 1 RR-P3HT化學結構 49 圖3- 2 PCBM化學結構 49 圖3- 3 PEDOT:PSS化學結構。 49 圖3- 4 遮蔽光罩(Shadow Mask)。 51 圖3- 5 元件製作流程示意圖。 51 圖3- 6 含有奈米結構之有機太陽能電池示意圖 52 圖3- 7 製作熱奈米壓印所需之矽模流程示意圖 52 圖3- 8 量測穿透與吸收設備之示意圖。 52 圖4- 1 以150℃與110℃進行前回火10分鐘處理之元件比較圖 53 圖4- 2 以150℃ 20分鐘進行前後回火處理的元件之比較圖 54 圖4- 3 以150℃ 30分鐘進行後回火處理之元件特性 55 圖4- 4 沉積脫模劑後矽基板之表面親疏水程度比較 55 圖4- 5 沉積不同時間之金薄膜進行高溫熱裂解後之SEM圖 56 圖4- 6 利用ICP蝕刻之矽基板之SEM圖 56 圖4- 7 進行熱奈米壓印之矽母模AFM與SEM圖 60 圖4- 8 未經過及經過壓印後之有機高分子薄膜表面SEM圖 61 圖4- 9 經過RIE製作10秒母模壓印後之SEM圖 62 圖4- 10 經過RIE製作30秒母模壓印後之SEM圖 63 圖4- 11 經過RIE製作60秒母模壓印後之SEM圖 64 圖4- 12經過熱奈米壓印後之有機主動層材料之穿透圖 65 圖4- 13 經過熱奈米壓印後之有機主動層材料之吸收圖 66 圖4- 14 經過熱奈米壓印後之有機主動層材料之全反射圖 67 圖4- 15 為雙層元件之暗電流與光電流量測圖 68 圖4- 16 結構示意圖 (a)雙層元件 (b)含有奈米結構之元件 68 圖4- 17 經過奈米壓印過後之雙層元件暗電流與光電流圖 72 圖4- 18經過奈米壓印過後之雙層混合元件暗電流與光電流圖 74

    [1] J.Honda,Kyocera Co.,Taipei International Photovoltaic Forum, 2006
    [2] A. Jager-Waldau, “PV Status Report 2007”, Institute for Environment and Sustainability, European Commission, 2007.
    [3] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Applied Physics Letters. 90, 183516, 2007
    [4] M.A. Green, “Third Photovoltaics Generation: Ultra-High Conversion Efficiency At Low Cost’, Progress in Photovoltaic: Research and Applications, Vol. 9, pp. 123 – 135, 2001
    [5] J. Y. Kim, S. H. Kim, L. H. Hho, L. Kkwanghee, Ma. Wanli, X. Gong, A. J. Heeger, “New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer,”Advanced Materials, vol. 18, no5, pp. 572-576 2006.
    [6] G.Li, V.Shrotriya, J.Huang, Y.Yao, Tommoriarty, K.Emery. YYang.”
    High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”.Nature Materials, Vol 4, November,2005,
    [7] J. Y. Kim,K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “ Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, “,Science, 317, 222. 2007
    [8] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf , A. J. Heeger, C. J. Brabec, “Design Rules for Donors in Bulk-Heterojunction SolarCells—Towards 10% Energy-Conversion Efficiency,”Advanced Materials.18,789-794,2006
    [9] D. M. Chapin, C. S. Fullerrson, “A new silicon p-n junction photocell for converting solar radiation into ele, G. L. Peactrical power,” Journal of Applied Physics. 25,676, 1954
    [10] S. E. Shaheen, D. S. Ginley, and G. E. Jabbour, “Organic based photovoltaics: Toward low-cost power generation,” MRS Bulletin, 30, 10,2005,
    [11] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hason, and R. Noufi, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,”Progress in Photovoltaics: Research and Applications. 7, 311,1999.
    [12] M.A. Green, K.Emery,Y. Hishikawa and W. Warta, “Solar Cell Efficiency Tables (Version 33)” Progress in Photovoltaics: Research and Applications. 17,85–94,2009;
    [13] S. R. Forrest, ” The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature,428, 911-918,2004.
    [14] E. Ameri, G. Dennler, C. Lungenschmied, C. Brabec, “Organic tandem solar cells: A review,” Energy and Environmental Science, 2, 347–363, 2009
    [15] M. A. Green, K. Emery, Y. Hisikawa,W. Warta, ”Solar cell efficiency tables (version 32),” Progress in Photovoltaics: Research and Applications, 16, 435-440,2007
    [16] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger & G. C. Bazan,” Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”,Nature Materials,6,497– 500,2007.
    [17] B. Zimmermann a, U. Würfel, M. Niggemann , “Longterm stability of efficient inverted P3HT: PCBM solar cells” Solar Energy Materials & Solar Cells, 93,491–496,2009.
    [18] H. Sirringhaus, “Device physics of solution-processed organic field-effect transistors,” Advanced Materials, vol. 17,no. 20, pp. 2411–2425, 2005..
    [19] V. C. Sundar, J. Zaumseil, V. Podzorov, “Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals,” Science, vol. 303, no.5664, pp.1644–1646,2004.
    [20] T. D. Anthopoulos, B. Singh, N. Marjanovic, et al., “High performance n-channel organic field-effect transistors and ringoscillators based on C60 fullerene films,” Applied Physics Letters, vol. 89, no. 21, 2006.
    [21] D. J. Gundlach, K. P. Pernstich, G. Wilckens, M. Gr¨uter, S.Haas, and B. Batlogg, “High mobility n-channel organic thin-film transistors and complementary inverters,” Journal of Applied Physics, vol. 98, no. 6,, 2005.
    [22] A.Hayakawa, O.Yoshikawa, T.Fujieda, K.Uehara, and S.Yoshikawaa, ”High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer”, Applied Physics Letters. 90, 163517,2007
    [23] G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity,” Applied Physics Letters. 64, 3422 ,1994.
    [24] G. Yu, C. Zhang, A.J. Heeger, “Dual-function semiconducting polymer devices light-emitting and photodetecting diodes,” Applied Physics Letters., 64, pp.1540-1542,1993...
    [25] J.C.Hummelen, B.W. Knight, F. LePeq, F. Wudl, J.Yao,and C.L. Wilkins:.” Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” The Journal of Organic Chemistry 60, 532,1995.
    [26] G.Yu, J Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger . “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions”,Science.270, 1789,1995.
    [27] C.Y. Yang,A.J. Heeger.,“Morphology of composites of semiconducting polymers mixed with C60”, Synthetic Metals.83, 85, 1996.
    [28] G. Yu and A.J. Heeger ,”Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions” Journal of Applied Physics. 78, 4510,1995.
    [29] J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, and A.B. Holme. “Efficient photodiodes from interpenetrating polymer networks”, Nature,376, 498,1995.
    [30] K. Tada, K. Hosada, M. Hirohata, R. Hidayat, T. Kawai,M. Onoda, M.Teraguchi, T. Masuda, A.A. Zakhidov, andK. Yoshino,” Donor polymer (PAT6)–acceptor polymer (CNPPV) fractal network photocells” Synthetic Metals. 85, 1305,1997.
    [31] P. A. Troshin, R. N. Lyubovskaya, V. F. Razumov, “Organic Solar Cells: Structure, Materials, Critical Characteristics, and Outlook”, Nanotechnologies in Russia, Vol. 3, Nos. 5–6, pp. 242–271, 2008,
    [32] F. Padinger, R. S. Rittberger and N. S. Sariciftci,“Effects of postproduction treatment on plastic solar cells”, Advanced Functional Material ,13,pp.85-88,2003.
    [33] G. Li, V. Shortriya, Y. Yao and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)” Journal of Applied Physics, 98, pp.043704-1,2005.
    [34] G, Li,V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processible polymer photovoltaic cells by self-organization of polymer blends” ,Natural Material, 4, pp.864-869,2005.
    [35] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology.” Advanced Functional Materials, Vol.15, No.10, 1617-1622, 2005
    [36] M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C.Waldauf, A. J. Heeger, C. J. Brabec, “Design rules for donors in bulk heterojunction solar cells-Towards 10% energy conversion efficiency”, Advance Material, 18, pp.789-794(2006).
    [37] T.Kietzke, “Recent Advances in Organic Solar Cells”, Advances in OptoElectronics, Volume 2007, 40285, 15 pages,2007
    [38] S. R. Forrest, ” The Limits to Organic Photovoltaic Cell Efficiency”, Mrs. Bull. 30, 28 (2005)
    [39] Global Warning Art, http://www.globalwarmingart.com/.
    [40] S.Y. Chou, P.R. Krauss, P.J. Renstrom, “Imprint of Sub-25 nm Vias and Trenches in Polymers,” Applied Physics Letters, Vol. 67, No. 20, p.3114–3116,1995
    [41] C. G. Willson , et al., “Step and flash imprint lithography: a new approach to high-resolution patterning”, Proc. SPIE, 3676(I): 379,1999
    [42] Y. Xia and G. M. Whitesides,” Soft lithography”,Annual Review of Materials Science. 28, 153,1998
    [43] M.D. McGehee,” Nanostructured Organic-inorganic Hybrid Solar Cells (Review Article)”, Materials Research Society Bulletin, 34 ,95,2009.
    [44] H.-J. Prall, R. Koeppe, R. Autengruber, M. Egginger, G. Dennler and N. S. Sariciftci, ”From evaporation to solution processed organic tandem solar cells“ ,Photonics for Solar Energy Systems, Vol. 6197, 2006
    [45] G. Dennler, H.-J. Prall, R. Koeppe, M. Egginger, R. Autengruber,N. S. Sariciftci, “Enhanced spectral coverage in tandem organic solar cells”Applied Physical Letter. 89, 073502,2006
    [46] F. Matsumoto, K. Moriwaki, Y.Takao and T. Ohno ,” Synthesis of thienyl analogues of PCBM and investigation of morphology of mixtures in P3HT “,Journal of Organic Chemistry , 4, No. 33,2008
    [47] B. R.Saunders, M. L. Turner, “Nanoparticle–polymer photovoltaic cells”, Advances in Colloid and Interface Science .138, 1 – 23,2008

    下載圖示 校內:2012-08-25公開
    校外:2012-08-25公開
    QR CODE