| 研究生: |
陳右朋 Chen, You-Peng |
|---|---|
| 論文名稱: |
基於時間樹模型和顧客偏好學習來解決商品組合與定價的動態聯合最佳化問題 Building on Temporal Tree Models and Customer Preference Learning to Address Dynamic Joint Optimization of Assortment and Pricing |
| 指導教授: |
林仁彥
Lin, Jen-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 動態商品組合最佳化 、動態商品定價最佳化 、湯普森抽樣 、最大似然估計 、理性選擇模型時間樹表式法 |
| 外文關鍵詞: | Dynamic Assortment Optimization, Dynamic Pricing Optimization, Thompson Sampling, Maximum Likelihood Estimation, Temporal Tree Representation of Rational Choice Model |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著零售業和電子商務的快速發展,如何在有限的展示空間內選擇並上架合適的商品以促進銷售,已成為店家關注的核心議題。除了上架策略,定價策略也是影響消費者購買行為的關鍵因素。本文旨在商品上架組合與定價的動態聯合最佳化問題,針對有限的上架容量及未知的消費者偏好進行動態決策,以期最大化店家多期的總期望利潤。本研究基於 Feng et al. (2023) 提出的時間樹模型(Temporal Tree Model),發展出價格相依樹模型(Price-Dependent Model),將商品價格納入消費者選擇行為模型,以此描述消費者在不同價格條件下的選擇偏好。在價格相依樹模型架構下,結合禁忌搜尋演算法進行商品組合探索,並以粒子群演算法求解對應定價策略,與傳統窮舉法相比,能於有限的函數評估資源下更快速地收斂至較佳解,顯著提升運算效率與解的品質。面對店家在消費者偏好未知情境下的決策問題,本研究採用湯普森抽樣(Thompson Sampling)演算法,藉由平衡探索與利用(exploration vs. exploitation)策略,有效學習消費者選擇傾向,並在降低探索成本的同時提升整體收益表現。數值模擬結果顯示,本方法相較於傳統最大似然估計(Maximum Likelihood Estimation, MLE)策略,在模型參數先驗分布符合均勻假設下,總體效能上具有顯著提升,其隨機實驗之中位數能降低 17 個百分點的相對遺憾損失。
With the rapid development of retail and e-commerce, determining how to select and display suitable products within limited shelf space to boost sales has become a core issue for retailers. In addition to assortment strategies, pricing strategies are also crucial factors influencing consumer purchasing behavior. This paper addresses the dynamic joint optimization problem of product assortment and pricing, aiming to maximize the total expected profit over multiple periods under limited capacity and unknown consumer preferences. Building on the Temporal Tree Model proposed by Feng et al. (2023), this study develops the Price-Dependent Tree Model, which incorporates product prices into the consumer choice model to describe preferences under varying price conditions. Within this framework, Tabu Search is employed to explore product assortments, and Particle Swarm Optimization is applied to determine pricing strategies. Compared to traditional exhaustive methods, this approach achieves faster convergence and higher solution quality with limited function evaluations. For decision-making under unknown preferences, Thompson Sampling is used to balance exploration and exploitation, effectively learning consumer choices and improving overall revenue. Numerical simulations show that, under the assumption of a uniform prior distribution of model parameters, this approach significantly outperforms Maximum Likelihood Estimation (MLE), reducing the median relative regret by approximately 17 percentage points in random experiments.
Agrawal, S., Avadhanula, V., Goyal, V., and Zeevi, A. (2017). Thompson sampling for the mnl-bandit. In Proceedings of the 2017 Conference on Learning Theory, pages 76–78.PMLR.
Agrawal, S., Avadhanula, V., Goyal, V., and Zeevi, A. (2019). Mnl-bandit: A dynamic learning approach to assortment selection. Operations Research, 67(5):1453–1485.
Akçay, Y., Natarajan, H. P., and Xu, S. H. (2010). Joint dynamic pricing of multiple perishable products under consumer choice. Management Science, 56(8):1345–1361.
Alptekinoğlu, A. and Semple, J. H. (2016). The exponomial choice model: A new alternative for assortment and price optimization. Operations Research, 64(1):79–93.
Alptekinoğlu, A. and Semple, J. H. (2021). Heteroscedastic exponomial choice. Operations Research, 69(3):841–858.
Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I. (2003). An introduction to mcmc for machine learning. Machine Learning, 50(1):5–43.
Barberá, S. and Pattanaik, P. K. (1986). Falmagne and the rationalizability of stochastic choices in terms of random orderings. Econometrica, 54(3):707–715.
Bhat, C. R. (1995). A heteroscedastic extreme value model of intercity travel mode choice. Transportation Research Part B: Methodological, 29(6):471–483.
Caro, F. and Gallien, J. (2007). Dynamic assortment with demand learning for seasonal consumer goods. Management Science, 53(2):276–292.
Chen, M. and Chen, Z.-L. (2015). Recent developments in dynamic pricing research: multiple products, competition, and limited demand information. Production and Operations Management, 24(5):704–731.
Chen, X., Owen, Z., Pixton, C., and Simchi-Levi, D. (2021). A statistical learning approach to personalization in revenue management. Management Science, 68(3):1923–1937.
Chen, Y.-C. and Mišić, V. V. (2022). Decision forest: A nonparametric approach to modeling irrational choice. Management Science, 68(10):7090–7111.
Dong, L., Kouvelis, P., and Tian, Z. (2009). Dynamic pricing and inventory control of substitute products. Manufacturing & Service Operations Management, 11(2):317–339.
Farias, V. F., Jagabathula, S., and Shah, D. (2013). A nonparametric approach to modeling choice with limited data. Management Science, 59(2):305–322.
Feng, Q., Shanthikumar, J. G., and Xue, M. (2022). Consumer choice models and estimation: A review and extension. Production and Operations Management, 31(2):847–867.
Feng, Q., Shanthikumar, J. G., and Xue, M. (2023). Rational choice models: The temporal tree representation (december 5, 2023). Available at SSRN: https://ssrn.com/abstract=4653687.
Ferreira, K. J., Simchi-Levi, D., and Wang, H. (2018). Online network revenue management using thompson sampling. Operations Research, 66(6):1586–1602.
Fisher, M. and Vaidyanathan, R. (2014). A demand estimation procedure for retail assortment optimization with results from implementations. Management Science, 60(10):2401–2415.
Gallego, G. and Van Ryzin, G. (1997). A multiproduct dynamic pricing problem and its applications to network yield management. Operations Research, 45(1):24–41.
Gallego, G. and Wang, R. (2014). Multiproduct price optimization and competition under the nested logit model with product-differentiated price sensitivities. Operations Research, 62(2):450–461.
Gao, P., Ma, Y., Chen, N., Gallego, G., Li, A., Rusmevichientong, P., and Topaloglu, H. (2021). Assortment optimization and pricing under the multinomial logit model with impatient customers: Sequential recommendation and selection. Operations Research, 69(5):1509–1532.
Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1):97–109.
Heger, J. and Klein, R. (2024). Assortment optimization: a systematic literature review. OR Spectrum, 46(4):1099–1161.
Honhon, D., Jonnalagedda, S., and Pan, X. A. (2012). Optimal algorithms for assortment selection under ranking-based consumer choice models. Manufacturing & Service Operations Management, 14(2):279–289.
Jagabathula, S., Mitrofanov, D., and Vulcano, G. (2022). Personalized retail promotions through a directed acyclic graph–based representation of customer preferences. Operations Research, 70(2):641–665.
Jagabathula, S. and Rusmevichientong, P. (2016). A nonparametric joint assortment and price choice model. Management Science, 63(9):3128–3145.
Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kök, A. G., Fisher, M. L., and Vaidyanathan, R. (2009). Assortment planning: Review of literature and industry practice. In Agrawal, N. and Smith, S. A., editors, Retail Supply Chain Management: Quantitative Models and Empirical Studies, pages 99–153. Springer US, Boston, MA.
Li, G., Rusmevichientong, P., and Topaloglu, H. (2015). The d-level nested logit model: Assortment and price optimization problems. Operations Research, 63(2):325–342.
Li, H. and Huh, W. T. (2011). Pricing multiple products with the multinomial logit and nested logit models: Concavity and implications. Manufacturing & Service Operations Management, 13(4):549–563.
McFadden, D. (1972). Conditional logit analysis of qualitative choice behavior.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092.
Miao, S. and Chao, X. (2021). Dynamic joint assortment and pricing optimization with demand learning. Manufacturing & Service Operations Management, 23(2):525–545.
Paul, A., Feldman, J., and Davis, J. M. (2018). Assortment optimization and pricing under a nonparametric tree choice model. Manufacturing & Service Operations Management, 20(3):550–565.
Rusmevichientong, P., Shen, Z.-J. M., and Shmoys, D. B. (2010). Dynamic assortment optimization with a multinomial logit choice model and capacity constraint. Operations Research, 58(6):1666–1680.
Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., Wen, Z., et al. (2018). A tutorial on thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96.
Sauré, D. and Zeevi, A. (2013). Optimal dynamic assortment planning with demand learning. Manufacturing & Service Operations Management, 15(3):387–404.
Wang, R. (2012). Capacitated assortment and price optimization under the multinomial logit model. Operations Research Letters, 40(6):492–497.
Williams, H. C. (1977). On the formation of travel demand models and economic evaluation measures of user benefit. Environment and Planning A, 9(3):285–344.
校內:2030-07-24公開