簡易檢索 / 詳目顯示

研究生: 戴梨容
Tai, Li-Jung
論文名稱: 微型圖案方法於模仁自由曲面貼合及補償之研究
Research of Fitting and Compensation by Micro-pattern Method for Free-form Surface
指導教授: 沈聖智
Shen, Sheng-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 微型圖案方法模仁補償曲面貼合ICP演算法光學鏡片
外文關鍵詞: Method of Designed Micro-pattern, Compensation of Insert, Fitting of Curved Surface, ICP Algorithm, Optical lens
相關次數: 點閱:115下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究創新採用微型圖案方法及曲面疊合技術計算塑膠光學鏡片收縮誤
    差值,並回饋至模仁曲面,建立一套適用於具有自由曲面特徵的模仁補償流程。其中,曲面疊合技術係以迭代最近點演算法(Iterative Closest Points, ICP)進行分析,透過搜尋每一個點對之間的最短距離以達到曲面貼合之目的。本研究為加速迭代最近點演算法計算速度,於模仁鏡片四個角落設計微型圖案,使得曲面貼合演算僅需針對微型圖案範圍,成功縮短模仁補償時間。補償後之模仁以相同射出參數進行射出驗證,並利用應力偏光觀測裝置檢測塑膠光學鏡片的殘留應力分布狀況,探討光學鏡片翹曲值與殘留應力是否產生正相關之影響。由實驗結果證實,有微型圖案之貼合演算時間比傳統貼合方法從1155.56 秒降至22.72 秒,計算速度加快50.87 倍,且貼合結果相似;模仁補償後所得光學鏡片形狀精度P-V 值由25.374μm 降至12.473μm;應力偏光觀測裝置檢測結果顯示殘留應力存在處確實為塑膠光學鏡片誤差範圍較大的區塊,可見殘留應力與形狀精度誤差具有關聯。因此由上述結果獲知,本論文所提之微型圖案方法確實可提升模仁補償計算速度與精度,未來可望應用於各種具有自由曲面特徵的塑膠光學鏡片產品。

    The purpose of the study is to establish the process that can compensate the free-from surface insert. The process uses micro-pattern method and curved surface fitting
    technology. And calculate the error of contract, then compensate to the path of insert processing. The technology of curved surface fitting analyzed by the iterative closest points (ICP). Through searching the least distance between the model shape and data shape of each point, the program can achieve fitting. In order to improve the disadvantage of iteration which is extremely time-consuming, the process increases designed micropattern at the edge of insert. As the range of curved surface fitting is only to calculate the micro-pattern at the edge, it will completely reduce the time of fitting. The results of experiment conclude that fitting calculation time with micro pattern is reduced from
    1155.56 seconds to 22.72 seconds than the conventional method. The average time of the curved surface fitting calculation through the micro-pattern is 50.87 times faster, and the result of two types fitting is identical. The shape accuracy P-V of the lens obtained by the insert compensation is decreased from 25.374μm to 12.473μm. The results can demonstrate that the micro-pattern method proposed in this paper can improve the time of fitting and the shape accuracy of the insert. The method of designed micro-pattern willing be applied to lens with free-form surface in the future.

    摘要 I Extended Abstract.II 致謝 VIII 目錄 IX 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1-1 前言與動機 1 1-2 研究方法 5 1-3 論文架構 7 第二章 文獻回顧 9 2-1 自由曲面發展現況 9 2-2 補償方法比較 15 2-2-1 國內補償方法 15 2-2-2 國外補償方法 18 2-3 表面對位 21 2-3-1 表面對位介紹 21 2-3-2 表面對位方法 22 第三章 ICP 演算法 26 3-1 剛體轉換 26 3-2 ICP 演算法流程 29 3-3 微型圖案設計 35 3-4 驗證ICP 演算法 37 3-4-1 驗證ICP 計算速度 37 3-4-2 驗證ICP 貼合能力 41 第四章 射出成型實驗 44 4-1 模流分析. 44 4-1-1 模型配置........................................................................................ 44 4-1-2 成形參數 47 4-2 射出成型實驗 49 4-2-1 實驗設備 49 4-2-2 實驗材料 53 4-2-3 自由曲面鏡片射出成型 54 4-3 自由曲面鏡片量測 56 4-3-1 量測設備 56 4-3-2 光學鏡片表面品質定義 58 4-3-3 量測結果 59 第五章 實驗結果與討論 61 5-1 曲面資料貼合計算 61 5-2 貼合結果驗證 67 5-3 模仁補償技術 70 5-4 殘留應力分布 72 第六章結論與未來展望 75 6-1 結論 75 6-2 未來展望 76 參考文獻 77

    [1] W. Lee, S. To, and C. Cheung, “Design and advanced manufacturing technology for freeform optics,” The Hong Kong Polytechnic University, 2005.
    [2] T.-H. Lo, “The outlook of global lens industry”, IEK, Available: http://www.iek.org.tw/BookView.dodomain=11&rptidno=752568259, 2017.
    [3] 蕭坤祐,自由曲面鏡片射出成形補償技術研究,國立高雄應用科技大學機械工程系,碩士論文,2017。
    [4] H. Wu, X. Zhang, and P. Ge, “Double freeform surfaces lens design for LED uniform illumination with high distance–height ratio,” Optics & Laser Technology, Vol. 73, pp. 166-172, 2015.
    [5] R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik- International Journal for Light and Electron Optics, Vol. 124, no. 19, pp. 3895-3897, 2013.
    [6] K. Wang, F. Chen, Z. Liu, X. Luo, and S. Liu, “Design of compact freeform lens for application specific light-emitting diode packaging,” Optics Express, Vol. 18, no. 2, pp. 413-425, 2010.
    [7] Bin Xie, Run Hu, Qi Chen, Xingjian Yu, Dan Wu, Kai Wang, and Xiaobing Luo, “Design of a brightness-enhancement-film-adaptive freeform lens to enhance
    overall performance in direct-lit light-emitting diode backlighting,” Appliedoptics, Vol. 54, no. 17, pp. 5542-5548, 2015.
    [8] Q. Feng, Q. Li, Y. Wang, C. Wu, and G. Lv, “The design and optimization of lens array for LED backlight in LCD imaging engine of helmet‐mounted display,”
    Journal of the Society for Information Display, Vol. 25, no. 5, pp. 312-319, 2017.
    [9] Eli Atad-Ettedgui, Tully Peacocke, David Montgomery, David Gostick Helen McGregor, Mark Cliff, “Opto-mechanical design of SCUBA-2,” Optomechanical Technologies for Astronomy, Vol.6273, pp.62732, 2006.
    [10] W. S. Holland, D. Bintley, E. L. Chapin, “SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope,” Monthly Notices of the Royal
    Astronomical Society, Vol. 430, no. 4, pp. 2513-2533, 2013.
    [11] 劉昭宏,非球面塑膠鏡片模具收縮率之研究,國立台灣科技大學機械系,碩士論文,2002。
    [12] 曾淑玲,非球面塑膠鏡片收縮誤差補償之研究,國立臺灣科技大學機械工程系,碩士論文,2005。
    [13] 陳勇志,應用非軸對稱收縮補償法於塑膠光學鏡片精密成型之研究,國立高雄應用科技大學模具工程系,碩士論文,2007。
    [14] 黃聖智,模仁補償於口內掃描器透鏡射出成形研究,國立高雄應用科技大學機械工程系,碩士論文,2015。
    [15] 簡瑞廷,林惠萍,「數值方法於光學模具加工與檢測技術的應用」,機械工業雜誌,第357 期,14-27 頁,2012。
    [16] 簡瑞廷,林惠萍,「非球面係數求解應用於模仁加工補償方法之研究」,機械月刊,第38 期,6-20 頁,2012。
    [17] C. Huang, “Investigation of injection molding process for high precision polymer lens manufacturing,” Ph.D. dissertation, ISE, The Ohio State University,
    Columbus, OH, 2008.
    [18] L. Dick, “High Precision Freeform Polymer Optics,” Optik & Photonik, Vol. 7, no. 2, pp. 33-37, 2012.
    [19] L.Dick,S.Risse, and A.Tünnermann, “Injection molded high precision freeform optics for high volume applications,” Advanced Optical Technologies, Vol. 1, no.
    1-2, pp. 39-50, 2012.
    [20] R. Steinkopf, A. Gebhardt, S. Scheiding, M. Rohde, O. Stenzel, S. Gliech, V. Giggel, H. Löscher, G. Ullrich, P. Rucks, A. Duparre, S. Risse, R. Eberhardt, A.
    Tünnermann, “Metal mirrors with excellent figure and roughness,” Optical Fabrication, Vol. 7102, pp. 71020, 2008.
    [21] 吳慶鈴,「光學自由曲面快速刀具伺服車削誤差的補償」,光學精密工程,第23 期,2620-2626 頁,2015。
    [22] H.-S. Kim, K.-I. Lee, K.-M. Lee, and Y.-B. Bang, “Fabrication of free-form surfaces using a long-stroke fast tool servo and corrective figuring with onmachine
    measurement,” International Journal of Machine Tools and
    Manufacture, Vol. 49, no. 12-13, pp. 991-997, 2009.
    [23] V. Raja and K. J. Fernandes, “Reverse Engineering: An Industrial Perspective,” Springer Science & Business Media, Vol.18, pp.33-46, 2007.
    [24] B. T. Yeo, M. R. Sabuncu, T. Vercauteren, N. Ayache, B. Fischl, and P. Golland, “Spherical demons: fast diffeomorphic landmark-free surface registration,”
    IEEE transactions on medical imaging, Vol. 29, no. 3, pp. 650-668, 2010.
    [25]M. P. Carter, “Computer graphics: principles and practice,” Wiley Online Library, pp.221-233, 1997.
    [26] A. Ullrich, N. Studnicka, J. Riegl, and S. Orlandini, "Long-range highperformance time-of-flight-based 3D imaging sensors," in Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission, Padova, Italy, 19-21 June 2002, pp. 852-855.
    [27] J. Salvi, C. Matabosch, D. Fofi, and J. Forest, “A review of recent range image registration methods with accuracy evaluation,” Image and Vision computing,
    Vol. 25, no. 5, pp. 578-596, 2007.
    [28] 李家宇,3D 都市尺度雷射掃瞄在建築數位典藏之應用-以新竹縣北埔鄉、竹東鎮及大台北地區為例,國立臺灣科技大學建築系,博士論文,2011。
    [29] A. W. Fitzgibbon, “Robust registration of 2D and 3D point sets,” Image and Vision Computing, Vol. 21, no. 13-14, pp. 1145-1153, 2003.
    [30] T. Masuda, “Registration and integration of multiple range images by matching signed distance fields for object shape modeling,” Computer Vision and Image Understanding, Vol. 87, no. 1-3, pp. 51-65, 2002.
    [31] Luming Liang, Mingqiang Wei, Andrzej Szymczak, Anthony Petrella, Haoran Xie, Jing Qin, Jun Wang, Fu Lee Wang, “Nonrigid iterative closest points for registration of 3D biomedical surfaces,” Optics and Lasers in Engineering, Vol. 100, pp. 141-154, 2018.
    [32] C. K. Chow, H. T. Tsui, and T. Lee, “Surface registration using a dynamic genetic algorithm,” Pattern recognition, Vol. 37, no. 1, pp. 105-117, 2004.
    [33] P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,” Sensor Fusion IV: Control Paradigms and Data Structures, Vol. 1611, pp. 586-607, 1992.
    [34] H. M. Kjer and J. Wilm, “Evaluation of surface registration algorithms for PET motion correction,” Bachelor thesis, IMM, DTU, Denmark,2010.
    [35] 曾信翰,陳春盛,三維雷射掃瞄儀反射標定位精度提升之研究-以Trimble Mensi GS200 為例,國立交通大學土木工程系,碩士論文,2007。
    [36] X. Fernandez and J. Amat, “Robotic manipulation of ophthalmic lenses assisted by a dedicated vision system,” in Proceedings. 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998, Vol.2,
    pp.1160-1165.
    [37] X. Fernandez and J. Amat, “Research on small fiducial mark use for robotic manipulation and alignment of ophthalmic lenses,” in 1999 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA '99, Barcelona, Spain, 1999, Vol.2, no.98, pp.1160-1165.
    [38] 林崇田,影像伺服於微影系統光罩對準之效能提昇方法研究,國立高雄第一科技大學機械與自動化工程研究所,碩士論文,2005。

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE