| 研究生: |
劉富弘 Liu, Fwu-Hung |
|---|---|
| 論文名稱: |
纖維直徑與微結構對聚丙烯穿晶形成能力的影響 Diameter and structure effects of fibers on the formation of polypropylene transcrystallinity |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 穿晶 、界面自由能差 、聚丙烯 、纖維 、結晶度 、AFM |
| 外文關鍵詞: | AFM, crystallinity, fiber, polypropylene, transcrystallinity, interfacial free energy difference |
| 相關次數: | 點閱:149 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究先以本實驗室中電紡絲製程得(1)對排聚苯乙烯(sPS)纖維,(2)亂排聚苯乙烯(aPS)纖維,(3)sPS/aPS-U複合纖維,後探討聚丙烯(PP)於不同纖維表面之穿晶行為,並對此種現象作研究。
本文分為五部分,第一部分是探討PP在不同結晶度sPS纖維表面成核的能力,改變sPS纖維結晶度,並以顯微鏡量測穿晶可形成之最高溫度(Tmax)、成核速率(I)、長滿核數(N∞),藉異質成核理論,比較界面自由能差。結果顯示,對不同結晶度之sPS纖維而言,PP於纖維表面成核能力無明顯改變。
第二部分是探討PP在不同直徑sPS纖維表面成核的能力。結果發現,纖維直徑越大,I、N∞與Tmax亦增加,界面自由能差降低,所以易有穿晶的出現。以原子力顯微鏡(AFM)觀察纖維表面之形態。結果顯示纖維粗糙度(Rq)會隨纖維直徑增加而變大,使PP核子易附著在纖維表面孔隙處,故易成核。
第三部份為探討PP在aPS纖維穿晶現象的觀察。結果顯示,PP在aPS纖維上,不會有穿晶現象產生。
第四部份是研究PP在sPS/aPS-U複合纖維表面成核的能力,結果顯示在電紡所得串珠狀纖維上,PP會在珠狀表面形成穿晶,但卻不在纖維上成核。分析結果顯示,串珠狀纖維中的珠狀部分為sPS rich,而纖維處則是由aPS-U rich所構成。
第五部分探討PP在nylon-6纖維表面成核的能力,結果顯示PP在nylon-6纖維上的成核能力比sPS纖維上來的優異。
Three different electrospun fibers, sPS, aPS sPS/aPS-U and nylon-6 fibers were obtained by electrospinning first. In this study, we investigated the transcrystallization of polypropyrene (PP) on the as-spun fibers with different diameters and structures.
This research is divided into five parts. First, as-spun sPS fibers with different degree of crystallinity were studied to reveal the crystallinity effects on the PP nucleating ability. Polarized optical microscope (POM) images are used to measure the nucleation rate (I), the nucleation density at saturation (N∞), the maximum temperature for transcrystalline layer (Tmax) to develop, and the interfacial free energy difference function of PP transcrystallization on the fiber. Experimental results show that there is no significant change in PP nucleating ability by changing the sPS fiber crystallinity.
The second part is to study the fiber diameter effects on the PP nucleating ability. The results show that I, N∞, and Tmax are increased with fiber diameter. A lower interfacial free energy difference function is obtained for larger fibers, which means that transcytstallization of PP is easily developed in the thicker fiber. Surface morphology of sPS fibers is revealed by atomic force microscope (AFM), showing that fiber roughness is increased with increasing fiber diameter.
The third part shows that there is no preferential PP nuclei on the aPS fiber surface.
The fourth part is to observe the PP nucleating ability on the sPS/aPS-U (bead-on-string) fiber. The POM images show the presence of PP transcrystallize on the beads but not shown on the string part. We analyze this particular morphology, and conduce that the spherical part is sPS rich phase, and fiber segment is composed of aPS rich phase.
In the last part, the PP nucleating ability on nylon-6 fiber is also examined. Results show that nylon-6 fibers can induce PP transcrystallinity more easily than sPS fibers.
1.D. W. Clegg, A. A. Collyer(eds) ”Mechanical Properties of Reinforced
Thermoplastics”, Elsevier, London, pp.2 (1986).
2.F. G. Krautz. Society of Plastic Engineers J, 27, 74 (1971).
3.R. H. Burton, M. J. Folkes. Plast. Rubber Processing Appl, 3, 129 (1983).
4.H. Li, X. Zhang, Y. Duan, D. Wang, L. Li, S. Yan. Polymer, 45, 8064
(2004).
5.C. Wang, L. M. Hwang. J Polym Sci, Part B: Polym Phys Ed, 34, 1435
(1996).
6.AM. Chatterjee, FP. Price. J Appl Polym Sci, 13, 2369 (1975).
7.J. L. Thomason, AA. Van Rooyen. J Mater Sci, 27, 889 (1992).
8.J. L. Thomason, AA. Van Rooyen. J Mater Sci, 27, 897 (1992).
9.E. Devaux, B. Chabert. Polym Commun, 15, 464 (1991).
10.M. Avella, GD. Volpe, E. Martuscelli, M.Raimo. Polym Eng Sci, 32, 376
(1992).
11.T. Hata, K. Ohaska, T. Yamada, N. Shibata, T. Matsumoto. Proc. 16th
Annual Symposium, Adhesion Society, Williamsburg, VA, February
180 (1993)
12.H. Ishida, P. Bussi. Macromolecules, 24, 3569 (1991).
13.J. Varga, J. K. Kocsis. J Polym Sci, Part B: Polym Phys Ed, 34, 657
(1996).
14.H. Ishida, P. Bussi. J Mater Sci, 26, 6373 (1991).
15.D. R. Morrow. J Macromol Sci Phy, 3, 53 (1969).
16.J. Varga, J Mater Sci, 27, 2557 (1992).
17.R. J. Samuel, R. Y. Yee. J Polym Sci, A(2), 10, 385 (1972).
18.L. H. Sperling. “Introduction to Physical Polymer Science”, 2ed, Willey, New York, Chap.6 (1992).
19.N. Ishihara, T. Seimiya, M. Kuramoto, M. Uoi. Macromolecules, 19, 2465
(1986).
20.J. W. Ha, K. J. Chu. Mater Lett, 33, 149 (1997).
21.S. Cimmino, E. di Pace, E. Martuscelli, C. Silvestre. Polymer, 32, 1080
(1991).
22.G. Guerra, V. M. Vitagliano, C. D. Rosa, V. Petraccone, P. Corradini.
Macromolecule, 23, 1539 (1990).
23.A. M. Evans, E. J. Kellar, J. Knowles, C. Galiotis, C. J. Carriere, H.
Andrews. Polym Eng Sci, 37, 153 (1997).
24.O. Gries, Y. Xu, T. Asano, J. Petermann. Polymer, 30, 590 (1989).
25.C. D. Rosa, G Guerra, V. Petraccone, P. Corradini. Polym J, 23, 1435
(1991).
26.Y. Chatani, Y. Fujii, Y Shimane, T. Ijitsu. Polym Prepr Jpn (Eng1. Ed),
37, E428 (1988).
27.N. M. Reynolds, H. D. Stidham, S. L. Hsu. Macromolecules, 24, 3662
(1991).
28.H. D. Wu, C. R. Tseng, F. C. Chang. Macromolecules, 34, 2996 (2001).
29.D. R. Holmes, C. W. Bunn, D. J. Smith. J Polym Sci, 27, 159 (1965).
30.H. Arimoto, M. Ishibashi, M. Hirai, Y. Chatani. J Polym Sci, Part A:
Polym chem Ed, 3, 317 (1965).
31.G. M. Kim, G. H. Michler, F. Ania, F. J. Balta Calleja. Polymer, 48
4814 (2007).
32.S. S. Nair, C. Ramesh. Macromolecules, 38 454 (2005).
33.A. Sharples. “Introduction to Polymer Crystallization”, London. p15.
(1966).
34.T. K. Kwei, H. Schonhorn, H. L. Frisch. J Appl Phys, 38, 2512 (1967).
35.T. Bessel, D. Hull, J. B. Shortall. Faraday Spec Discuss Chem Soc, 2,
137 (1972).
36.D. Campbell, M. M. Qayyum. J Mater Sci, 12, 2427 (1977).
37.T. Hardwich, Phd thesis, Brunel University, UK (1987).
38.M. J. Folkes, S. T Hardwick. J Mater Sci Lett, 6, 656 (1987).
39.C.Wang, C. R. Liu. Polymer, 40, 289 (1999).
40.N. W. Hayes, G. Beamson, D. T. Clark, D. T. Clarke, D. S. L. Law.
Polymer, 37, 523 (1996).
41.H. Ishida, P. Bussi. Polym. Prepr, 39, 539 (1990).
42.L. Mandelkern. “Crystallization of Polymers”, Mc Graw-Hill, New York, p246 (1964).
43.B. Wunderlich. “Macromolecular Physics”, Academic Press, New York Vol.2, Ch5, (1976).
44.J. D Hoffman, G. T. Davis, J. I. Laurtizen. “Treatise on Soild State Chemistry”, N. B. Hannay, Plenum, New York ,Vol. 3, Ch.7 (1976).
45.D.Turnbull, J. C. Fisher. J Chem Phys, 17, 71 (1949).
46.T. K. Kwei, H. Schonhorn. Polym Lett, 6, 87 (1968).
47.M. Kobayashi, T. Nakaoki. Macromolecules, 23, 78 (1990).
48.J. D. Rudder, B. Berg, H. Berghmans. Macromol Chem Phys, 203, 2083
(2002).
49.黃威浤,”對排/同排聚苯乙烯摻合體結晶行為之研究”, 國立成功大學化學工程研究所碩士論文 (2007).
50.C. Wang, L. M. Hwang. J Polym Sci Polym Phys Ed, 34, 47 (1996).