簡易檢索 / 詳目顯示

研究生: 張孝裕
Chang, Hsiao-Yu
論文名稱: 倉儲受限下可變動生產速率之兩產品經濟批量排程問題
Two Products Economic Lot Scheduling Problem under Warehouse-space Constraint and Flexible Approach
指導教授: 張秀雲
Chang, Shiow-Yun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 39
中文關鍵詞: 彈性速率法共同週期法經濟批量排程問題倉儲空間限制
外文關鍵詞: Warehouse constraint, Flexible approach, Common cycle approach, Economic lot scheduling problem
相關次數: 點閱:136下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無限規劃期下,產品需求率固定且所有需求皆必須滿足;不同的產品有不同的整備時間及整備成本,此整備時間及整備成本僅與該產品有關連,與製造順序無關聯;單位產品每單位時間之存貨持有成本固定;單機器於同一時間只能用於生產單一產品的多產品生產規劃問題被稱之為經濟批量排程問題(Economic Lot Scheduling Problem, ELSP)。經濟批量排程問題可經由降低生產速率來減少存貨成本,進而得到較低的總成本。本研究之兩產品經濟批量排程問題所採用的降低生產速率方式為彈性速率法(Flexible Approach),除了必須滿足上述經濟批量排程問題之基本假設外,另假設於倉儲空間有限、有多餘產能可採用彈性速率法、產品每次生產之批量固定,且產品開始生產的時間為存貨降至零之時開始生產,在這些條件之下決定出兩產品的生產週期長度,目標為最小化每單位時間總成本,稱此問題為『倉儲受限下可變動生產速率之兩產品經濟批量排程問題』。
    本研究得出兩產品在倉儲有限下,應用彈性速率法後之最佳求解政策必為共同週期法。數值分析部份,比較了兩產品倉儲受限不同模型間之成本,本研究所採用之模型除了有較低之成本外;於廠商執行運作時也比較容易,另分析了不同參數值對模型之影響。於多產品方面,不論整備時間及整備成本是否與製造順序有關聯,得出在倉儲有限下應用彈性速率法之經濟批量排程問題,不存在機器閒置時間的性質;給定任一生產排序,證明出倉儲受限下可變動生產速率之經濟批量排程問題,最大總體積發生在某一產品以最大速率結束生產之時,此性質有助於多產品模式之建立。

    The problem which considers a single facility dedicated to the production of several different items is well known as the Economic Lot Scheduling Problem (ELSP). The objective of this problem is to find a schedule to minimize the setup costs and inventory holding costs while satisfying the static demand of all items. Traditionally, the production rate of the machine was chosen according to its maximum capacity. In recent years, it has been suggested that the manufacturer can make good use of the machine idle time by reducing production rate. Reducing production rate will lead to lower inventory holding costs, and hence the total costs. In this research, we will adopt the flexible approach to take up the machine idle time. Sometimes manufacturers have to decide the production quantities and schedules under some constraints. Warehouse space constraint is one of them that manufacturers might encounter. We consider the case where two products are required to be produced in a single facility with warehouse constraint. Assume that the machine has idle time to use flexible approach. The objective of this research is to determine the optimal production quantities.
    This study obtained the following propositions: 1. Common cycle approach is the best production policy for two products warehouse constrainted ELSP using flexible approach. 2. In the aspect of multiple products, it does not exist machine idle time in the optimal solution of warehouse constrainted ELSP using flexible approach. This property also holds for sequence dependent setup time and setup cost ELSP. 3. The maximum volume of inventory occurs at the time that the machine stops producing a product at its maximum rate. This property is helpful for the formulation of the ELSP.

    中文摘要                    I Abstract                    II 致謝                      III 目錄                      IV 表目錄                     VI 圖目錄                     VII 圖目錄                     VII 第一章 緒論                  1 第二章 文獻探討                3 2.1經濟批量排程問題              3 2.2經濟批量排程問題常見的求解方式       4 2.2.1獨立解法                 5 2.2.2共同週期法                5 2.2.2.1共同週期法下可控制生產速率的生產方法  6 2.2.2.2共同週期法下使用彈性速率法進行製造   7 2.2.3基本週期法                9 2.2.4延伸基本週期法              10 2.3考慮其它因素的經濟生產批量問題       12 第三章 模式建立與求解             14 3.1基本假設與所採用之符號           14 3.2模型建立                  16 3.2.1兩產品問題                16 3.2.2多產品問題                21 第四章 數值分析                27 4.1倉儲空間對平均總成本之影響         27 4.2最大製造速率對平均總成本之影響       29 4.3需求速率對平均總成本之影響         30 4.4單位產品的體積對平均總成本之影響      32 4.5小結                    34 第五章 結論與未來研究方向           35 5.1研究成果                  35 5.2未來研究方向                35 參考文獻                    37

    1.Brander, P., Leven, E., and Segerstedt, A., Lot sizes in a capacity constrained facility - A simulation study of stationary stochastic demand. International Journal of Production Economics, 93-94, 375-386. (2005).
    2.Ben-Daya, M. and Hariga, M., Economic lot scheduling problem with imperfect production processes. Journal of the Operational Research Society, 51, 875-881. (2000).
    3.Boctor, F. F., The two product, single-machine, static demand, infinite horizon lot scheduling problem. Management Science, 28(7), 798-807. (1982).
    4.Bomberger, E., A dynamic programming approach to a lot size scheduling problem. Management Science, 12, 778-784. (1966).
    5.Buzacott, J.A. and Ozkarahan, I.A., One- and two-stage scheduling of two products with distributed inserted idle time: the benefits of a controllable productions rate. Naval Research Logistics Quarterly, 30, 675–696. (1983).
    6.Bruce H. Faaland, Thomas, G. S., and Antonio, A. R., (2004). Economic lot scheduling with lost sales and setup times. IIE Transactions, 36, 629–640.
    7.Elmaghraby, S.E., The economic lot scheduling problem (ELSP): Review and extension. Management Science, 24, 587-597. (1978).
    8.Eynan, A., The benefits of flexible production rates in the economic lot scheduling problem. IIE Transactions, 35(11), 1057-1064. (2003).
    9.Gallego, G., Reduced production rates in the economic lot scheduling problem. International Journal of Production Research, 31, 1035-1046. (1993).
    10.Gallego, G. and Moon, I., How to avoid stockouts when producing several items in a single facility? What to do if you can't. Computers & Operations Research, 23, 1-12. (1996).
    11.Gary C. Lin, Dennis E. Kroll, and C.J. Lin, Determining a common production cycle time for an economic lot scheduling problem with deteriorating items. European Journal of Operational Research, Article in press. (2005).
    12.Giri, B.C., Moon, I., and Yun, W.Y., Scheduling economic lot sizes in deteriorating production systems. Naval Research Logistics, 50, 650-661. (2003).
    13.Goyal, S.K. and Gopalakrishnan, M., Production lot sizing model with insufficient production capacity. Production Planning and Control, 7(2), 222-224. (1996).
    14.Hanssmann, F., Operations research in production and inventory control, John Wiley and Sons, New York. (1962).
    15.Hsu, W.L., On the general feasibility test of scheduling lot size for several products on one machine. Management Science, 29, 93-105. (1983).
    16.Ibrahim, A. and Thomas, L. C., A two-product, single-machine, storage-constrained production problem. The Journal of the Operational Research Society, 42(9), 785-791. (1991).
    17.Khoury, B.N., Abboud, N.E., and Tannous, M.M., The common cycle approach to the ELSP problem with insufficient capacity. International Journal of Production Economics, 73, 189-199. (2001).
    18.Khouja, M., Michalewicz, Z., and Wilmot, M., The use of genetic algorithms to solve the economic lot size scheduling problem. European Journal of Operational Research, 110, 509-524. (1998).
    19.Lee, C. Y., Economic lot scheduling for two-product problem. IIE Transactions, 21(2), 162-169. (1989).
    20.Maxwell, W.L., The scheduling of economic lot sizes. Naval Research Logistics Quarterly, 11 (2–3), 89–124. (1964).
    21.Moon, I., Gallego, G., and Simchi-Levi, D., Controllable production rates in a family productions context. International Journal of Production Research, 29, 2459-2470. (1991).
    22.Moon, I., Silver, E. A., and Choi, S., Hybrid genetic algorithm for the economic lot-scheduling problem. International Journal of Production Research, 40, 809-824. (2002).
    23.Rogers, J., A computational approach to the lot scheduling problem. Management Science, 3, 264-291. (1958).
    24.Sheldon, R., The lot scheduling problem in the hierarchy of decision models. Ph.D. dissertation. School of OR & IE, Cornell University, Ithaca, NY 14850, USA. (1986).
    25.Silver, E. A., Deliberately slowing down output in a family production context. International Journal of Production Research, 28(1), 17–27. (1990).
    26.Silver, E. A., Pyke, D. F., and Peterson, R., Inventory management and production planning scheduling, Wiley, New York, NY. (1998).
    27.Stankard, M. and Gupta, S., A note on Bomberger's approach to lot size scheduling: Heuristic proposed. Management Science, 15(7), 449-452. (1969).
    28.Wagner, B. J. and Davis, D. J., A search heuristic for the sequence-dependent economic lot scheduling problem. European Journal of Operational Research, 141, 133-146. (2002).

    下載圖示 校內:2009-09-06公開
    校外:2009-09-06公開
    QR CODE