簡易檢索 / 詳目顯示

研究生: 王智宏
Wang, Chih-Hung
論文名稱: 直排輪跳躍著地之下肢生物力學分析
Biomechanical analysis of lower limbs during landing under in-line skating jump
指導教授: 邱宏達
Chiu, Hung-Ta
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 57
中文關鍵詞: 限制踝關節直排輪著地前十字韌帶
外文關鍵詞: ankle constrain, ACL, landing, in-line skating
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去關於直排輪的研究多著重於傷害的調查以及護具的使用上,但並無探討其傷害的機制。直排輪跳躍著地動作與雙腳急停跳躍著地相當類似,雙腳急停跳躍是在兩到三步的跨步助跑後,以雙腳著地後立刻起跳,跳至最高後再以雙腳著地。一般高處落下著地的研究指出膝關節彎曲,以及踝關節蹠屈在避震功能上扮演著相當重要的角色,但直排輪鞋限制了踝關節活動後,對於著地時下肢的運動學、地面反作用力以及肌肉活化上會產生何種影響則是未知的。因此,本研究目的為描述雙腳急停跳躍與直排輪跳躍著地的下肢動作特性,並比較踝關節受限後的影響。
    本研究八位受試者需表現三種不同的跳躍著地:赤腳急停雙腳跳躍(BF)、限制踝關節的急停雙腳跳躍(AC),以及穿著直排輪的跳躍著地(IS)。使用一台高速攝影機記錄人體在矢狀面上的動作,測力板與表面肌電儀則用來測量地面反作用力與下肢肌肉的活化情形。結果指出直排輪跳躍著地過程中,髖關節會有較大與較快速的彎曲,而膝關節則是較少與較慢的彎曲,這種著地策略主要在降低身體重心以維持動作穩定,但無法提供人體著地時的避震效果,因此若要減緩著地時的撞擊力直排輪鞋便扮演重要的角色。此外,踝關節因為被直排輪鞋所限制,因此踝關節明顯活動度較BF與AC小。肌肉活化上,在預備著地階段,IS的股直肌與脛前肌的活化較大,而腓腸肌活化則較BF與AC為小,而腿後肌群共同收縮比(股二頭肌/(股直肌+股二頭肌))較低,這樣的動作特性可能造成膝關節,尤其是前十字韌帶,較大的負荷而增加傷害的風險。因此,選用避震效果較佳的直排輪鞋,在表現跳躍著地時,可有效吸收地面的衝擊力。直排輪跳躍著地會有較大的髖關節活動與較小的膝關節活動,使著地更加穩定以減低發生跌倒傷害的機會。

    Most of previous studies about in-line skating have focussed on the investigation of injury and the effect of using a guard. However, there have been no researches to study the mechanics of injury. In-line skating jump landing was similar to stop-jump landing. Stop-jump consists of a 2-3 steps approach run and a two-footed landing followed by two-footed takeoff to maximum height and two-footed landing again. However, no study has been involved to investigate the second two-footed landing after the takeoff. The studies of drop landing indicated that knee, ankle joints and plantarflexor played important roles in landing cushioning. In-line skating boots will constrain the motion of plantar-flexion, however, the influence of in-line skating boots on ground reaction force, kinematics, and muscle activation of lower limbs during landing has been unknown. Therefore, the purpose of this study tried to describe the movement characteristics of lower limbs during landing with stop-jump and in-line skating jump and compare the effect on lower limbs motion under ankle constrain.
    Eight subjects were asked to perform three jump landing tasks: stop-jump with barefoot (BF), stop-jump with ankle constrain (AC) and jump with in-line skating boots (IS). Landing movements in sagittal plane were recorded by one high speed camera. One force plate and EMG system were used to measure the ground reaction force and the activation of four muscles during landing.
    The results indicated that hip joint had more and quicker flexion, and the knee joint had less and slower flexion under IS. This landing strategy was used to lower the center of gravity of the body to keep the movement steadily, but could not absorb the shock during landing. Therefore, the in-line skating boots seems to play an important role to reduce the impact during landing. Because the ankle was constrained under IS, the range of motion was lower than BF and AC During pre-landing phase, the activation of rectus femoris and tibialis anterior was the largest under IS, but the activation of gastrocnemius was the lowest under IS, and the co-contraction ratio (biceps femoris/( biceps femoris+rectus femoris)) was also lowest. These characteristics might cause higher loading in knee joint, especially on anterior cruciate ligament, and increase the risk of injury. Therefore, the in-line skating boots with well cushioning could reduce the landing impact and reduce the falling injury while the human use the landing strategies to keep stability.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第壹章 緒論 1 第一節 前言 1 第二節 問題背景 2 第三節 研究目的 3 第四節 操作性定義 4 第貳章 文獻回顧 5 第一節 直排輪的運動傷害 5 第二節 冰刀鞋與運動表現 6 第三節 急停雙腳跳躍 (Stop jump) 8 第四節 高處落下著地 (drop landing) 10 第五節 總結 11 第參章 研究方法 12 第一節 受試者 12 第二節 使用儀器 12 第三節 實驗流程 13 第四節 資料分析 16 第五節 統計方法 17 第四章 結果 18 第一節 運動學 18 第五章 討論 28 第一節 避震 28 第二節 動作控制 31 第三節 運動傷害 33 第四節 結論 34 參考文獻 35 附錄一 各受試者運動學及動力學參數測量結果 39 附錄二 Matlab程式碼 47 之一 地面反作用力濾波 47 之二 計算最大負荷率與最大值發生時間 48 之三 計算最大MVC 49 之四 肌電訊號處理 51 之五 計算coupling angle 55 附錄三 IRB審核證明 56 附錄四 受試者同意書 57

    王淑卿 (1998)。溜出一片天地—直排輪式溜冰鞋之發展趨勢。台灣經濟研究月刊, 21(6),72-75。
    李俊秀(1999)。輕鬆學直排輪。台北市:二匠文化。
    邱宏達(2002)。由地面反作用力評估鞋底避震能力-材料與人體測試之比較。中華民國體育學報,32,69-78。
    郭藍遠、楊志鴻、林千芬、吳汶蘭、王靜怡、張志仲(2006)。踝關節貼紮對平衡和高處著地緩衝能力的影響。物理治療,31(2),81-86。
    楊德耕、謝霖芬(2001)。台北市直排輪鞋運動傷害之調查。中華民國復健醫學會雜誌,29(2),83-89。
    Arampatzis, A., Morey-Klapsing, G., & Bruggemann, G.-P. (2003). The effect of falling height on muscle activity and foot motion during landings. Journal of Electromyography and Kinesiology, 13, 533-544.
    Bruening, D., & Richards, J. G. (2005). Optimal Ankle Axis Position for Articulated Boots. Sports Biomechanics, 4(2), 215-225.
    Bruening, D. A., & Richards, J. G. (2006). The Effects of Articulated Figure Skates on Jump Landing Forces. Journal of Applied Biomechanics, 22, 285-295.
    Byars, M. (1999). 50 Sports Wares Innovations in Design and Materials. Swizerland: RotoVision SA.
    Callé, S. C. (1994). In-Line Skating Injuries, 1987 through 1992. American Journal of Public Health, 84(4), 675.
    Chappell, J. D., Creghton, R. A., Giulian, C., Yu, B., & Garrett, W. E. (2007). Kinematics and electromyography of landing preparation in vertical stop-jump. The American Journal of Sports Medicine, 35(2), 235-241.
    Chappell, J. D., Yu, B., Kirkendall, D. T., & Garret, W. E. (2002). A Comparison of Knee Kinetics between Male and Female Recreational Athletes in Stop-Jump Tasks. The American Journal of Sports Medicine, 30(2), 261-267.
    Chi, K.-J., & Schmitt, D. (2005). Mechanical energy and effective foot mass during impact loading of walking and running. Journal of Biomechanics, 38, 1387-1395.
    Decker, M. J., Torry, M. R., Wyland, D. J., Sterett, W. I., & Steadman, J. R. (2003). Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clinical Biomechanics, 18, 662-669.
    Fedel, F. J., Keteyian, S. J., Brawner, C. A., Marks, C. R., Hakim, M. J., & Kataoka, T. (1995). Cardiorespiratory responses during exercise in competitive in-line skaters. Medicine and Science in Sports and Exercise, 27(5), 682-687.
    Hagood, S., Solomonow, W., Baratta, R., Zhou, B. H., & D'Ambrosia, R. (1990). The effect of joint velocity on the contribution of the antagonist musculature to knee stiffness and laxity. American Journal of Sports Medicine, 18, 182-187.
    Haguenauer, M., Legreneur, P., & Monteil, K. M. (2006). Influence of figure skating skates on vertical jumping performance. Journal of Biomechanics, 39, 699-707.
    Houshian, S., & Andersen, H. M. (2000). Comparison between in-line and rollerskating injury. Scandinavian Journal of Medicine & Science in Sports, 10, 47-50.
    Jaffe, M. S., Dijkers, M. P., & Zametis, M. (1997). A population-based survey of in-line skater's injuries and skating practices. Archives of Physical Medicine and Rehabilitation, 78, 1352-1357.
    Kellis, E., Arabatzi, F., & Papadopoulos, C. (2003). Muscle co-activation around the knee in drop jumping using the co-contraction index. Journal of Electromyography and Kinesiology, 13, 229-238.

    Kellis, E., & Baltzopoulos, V. (1998). Muscle activation differences between concentric and eccentric isokinetic exercise. Medicine and Science in Sports and Exercise, 30, 1616-1623.
    Knox, C. L., & Comstock, R. D. (2006). Video analysis of falls experienced by paediatric iceskaters and roller/inline skaters. British Journal of Sports Medicine, 40, 268-271.
    Koning, J. J. D., Groot, G. D., & Schenau, G. J. V. I. (1991). Coordination of leg muscles during speed skating. Journal of Biomechanics, 24(2), 137-146.
    KOVACS, I., TIHANYI, J., DEVITA, P., RACZ, L., BARRIER, J., & HORTOBAGYI, T. (1999). Foot placement modifies kinematics and kinetics during drop jumping. Medicine and Science in Sports and Exercise, 31(5), 708-716.
    Kreighbaum, E. F., & Smith, M. A. (1996). Sports and Fitness Equipment Design. Champaign: Human Kinetics.
    Mahar, A. T., Derrick, T. R., Hamill, J., & Caldwell, G. E. (1997). Impact shock and attenuation during in-line skating. Medicine and Science in Sports and Exercise, 29(8), 1069-1075.
    Major, M. J., Beaudoin, A. J., Kurath, P., & Hsiao-Wecksler, E. T. (2007). Biomechanics of aggressive inline skating: landing and balancing on a grind rail. Journal of Sports Sciences, 25(12), 1411-1422.
    Osberg, J. S., & Stiles, S. C. (2000). Safety behavior of in-line skaters. Injury Prevention, 6, 229-231.
    Petrone, N. (2007). Acquistion and analysis of ground reaction forces and foot orientation on in-line skates during track speed skating. Paper presented at the XXI Congress, International Society of Biomechanics, Taipei, Taiwan.
    Schiebr, R. A., Branche-Dorsey, C. M., & Ryan, G. W. (1996). Risk factors for injuries from in-line skating and the effectiveness of safety gear. The New England Journal of Medicine, 335(22), 1630-1635.
    Self, B. P., & Paine, D. (2001). Ankle biomechanics during four landing techniques. Medicine and Science in Sports and Exercise, 33(8), 1338-1344.
    Solomonow, W., Baratta, B., Zhou, B., Shoji, H., Bose, W., Beck, C., et al. (1987). The synergetic action of the ACL and thigh muscles in maintaining joint stability. American Journal of Sports Medicine, 15, 207-213.
    Urabe, Y., Kobayashi, R., Sumida, S., Tanaka, K., Yoshida, N., Nishiwaki, G. A., et al. (2005). Electromyographic analysis of the knee during jump landing in male and female athletes. The Knee, 12, 129-134.
    Wit, B. D., Clercq, D. D., & Aerts, P. (2000). Biomechanics analysis of the stance phase during barefoot and shod running. Journal of Biomechanics, 33, 269-278.
    Yi, C.-H., Brunt, D., Kim, H.-D., & Fiolkowski, P. (2003). Effect of ankle taping and exercise on EMG and kinetics during landing. Journal of Pyhsical Therapy Science, 15(2), 81-85.
    Yu, B., & Garrett, W. E. (2005). Hamstring co-contraction does not necessarily reduce ACL loading. Paper presented at the ISB XXth Congress - ASB 20th Annual Meeting, Celeveland, Ohio.
    Yu, B., Lin, C.-F., & Garrett, W. E. (2006). Lower extremity biomechanics during the landing of a stop-jump task. Clinical Biomechanics, 21, 297-305.

    下載圖示 校內:2009-08-06公開
    校外:2009-08-06公開
    QR CODE