簡易檢索 / 詳目顯示

研究生: 鐘子淵
Chung, Tzu-Yuan
論文名稱: 利用GRACE、測高資料、海洋模型估計地心變動
Estimation of Geocenter Variation Using a Combination of GRACE, Satellite Altimetry, and Ocean Models
指導教授: 郭重言
Kuo, Chung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 78
中文關鍵詞: 地心變動衛星測高GRACE
外文關鍵詞: Geocenter motion, Altimetry, GRACE
相關次數: 點閱:93下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地心變動定義為地球質量中心 (center of mass, CM) 相對於幾何中心 (center of figure, CF) 之位置變化,一般可以一階項之球諧係數表示。地心變動主要成因來自於地球系統中之質量重新分佈,如海洋、大氣、陸上水文、冰川及冰原間之質量交換,以及地球內部質量變化如冰後回彈 (Post-Glacial Rebound, PGR) 及地震。地心變動反應出地球質量平衡以及固體地球與地球系統中移動質量間之交互作用,因此精確估計地心變動有助於了解地球內部變化。先前已有許多研究利用衛星觀測地面固定站進行地心變動估計,但受到觀測點位分布不均勻以及海洋區域無資料之影響導致結果精度較差。GRACE (Gravity Recovery and Climate Experiment) 自2002年發射升空後,成功地提供高精度之月平均重力場解,其與氣象模型或其他衛星觀測量結合可精確推算地心變動,但依然受到模型精度無法評估之限制。本研究結合GRACE與測高資料,經由兩種計算方法精確估計地心變動,方法分別為Swenson等人 [2008]方式和疊代方式。兩方法計算成果與先前研究相符,而疊代方法之成果精度較佳。由於衛星測高觀測量是以ITRF (International Terrestrial Reference Frame) 為參考框架,其與CF間之差異對地心變動之計算產生影響,因此本研究另外使用海洋模型取代測高資料進行計算,其結果顯示ITRF與CF之差異並無造成地心變動計算明顯改變,而使用不同範圍之海洋資料將導致地心變動估計成果不同,當以海洋模型取代測高資料時,地心變動趨勢及相位有明顯差異。本研究亦考慮洩漏效應 (leakage effects) 對於地心變動計算之影響,成果藉由移除海岸線300 公里內之海洋資料來消除。另外,PGR一階項改正量對於地心變動計算之影響僅反應於趨勢訊號上,影響量約佔改正量之80%。

    Geocenter variation, defined as the motion of center of mass (CM) of the Earth relative to the center of figure (CF), is usually represented by degree one spherical harmonic coefficients. The geocenter variation is mainly caused by the mass redistribution in the Earth system including the mass exchange between ocean, atmosphere, ground hydrology, mountain glacier and ice sheets, and the mass change inside of the Earth like Post-Glacial Rebound (PGR) and earthquakes. Accurate Estimation of geocenter variation has a contribution to understand the variation in the Earth since geocenter variation reflects the Earth mass balance and the interaction between the solid Earth and transported mass in the Earth system. Several studies for estimating geocenter variation have been done, but the results were limited as a result of uneven distribution of measurements or shortage of data in oceans. GRACE has provided monthly gravity solutions with high precision since launched in 2002, which can be used for estimating geocenter variation by combining with climate models or other satellite measurements, but the results are still limited because of the uncertainties of climate models. In this study, geocenter variation is determined by two novel methods using the combination of GRACE and altimetry data including the method used by Swenson et al. [2008] and an iterative algorithm. Both results agree well with previous researches and the accuracy of the result derived by the iterative method is higher. Since the altimetry measurements refer to ITRF (International Terrestrial Reference Frame), the displacement between the origins of ITRF and CF would affect the estimation of geocenter variation. Therefore, ocean models are used for geocenter variation determination instead of altimetry data. The result shows the displacement between the origins of ITRF and CF would not change the estimation of geocenter variation significantly but the different covering areas of altimeters or ocean models would change the estimation of geocenter variation in terms of trends and phases. In addition, leakage effects are also considered in the computation by removing ocean data near coastlines within 300 km distance. Different degree one coefficients of PGR models only change the trends of estimated geocenter variation with 80% of their values.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究背景及動機 1 1.2 論文架構 6 第二章 GRACE、衛星測高與海洋模型 7 2.1 GRACE 7 2.1.1 GRACE介紹 7 2.1.2 GRACE觀測原理 13 2.2 衛星測高與海洋模型 13 2.2.1 衛星測高介紹 13 2.2.2 測高觀測原理 21 2.2.3 海洋模型 29 第三章 地心變動估計之方法 34 3.1 背景公式 34 3.2 資料前處理 36 3.2.1 GRACE資料 36 3.2.2 測高資料 38 3.2.3 冰後回彈 43 3.2.4 海洋模型 43 3.3 地心變動估計 44 3.3.1 方法一 44 3.3.2 方法二 49 第四章 地心變動估計之成果 51 4.1 海洋資料 51 4.2 兩方法之比較 56 4.3 GRACE資料之影響 61 4.4 PGR之影響 68 第五章 結論與建議 72 參考文獻 75

    尤瑞哲,測量座標系統第二版,國立成功大學測量與空間資訊學系,2009
    陳盈樺,利用測高衛星、重力衛星、NCEP氣候模型估計地心與C¬20變動,國立成功大學測量及空間資訊學系碩士論文,2009
    高煥欽,台灣附近波形重定之測高資料精度評估,國立成功大學測量及空間資訊學系碩士論文,2010
    游輝欽,球諧分析衛星加速度求定地球重力場,國立交通大學土木工程學系碩士論文,2000
    Antonov, J. I., S. Levitus, and T. P. Boyer, Steric sea level variations during 1957-1994: Importance of salinity, J. Geophys. Res., 107 (C12), 8013-8021, 2002
    Argus, D. F., W. R. Peltier, and M. M. Watkins, Glacial Isostatic Adjustment Observed Using Very Long Baseline Interferometry and Satellite Laser Ranging Geodesy, J. Geophys. Res., 104, B12, 29,077-29,093, DECEMBER 10, 1999.
    Blewitt, G. and P. Clarke, Inversion of Earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution, J. Geophys. Res., 108, NO. B6, 2311, doi:10.1029/2002JB002290, 2003.
    Bouillé, F., A. Cazenave, J. M. Lemoine, and J. F. Cretaux, Geocentre motion from the DORIS space system and laser data to the Lageos satellites: Comparison with surface loading data, Geophys. J. Int., 143, 71–82, 2000.
    Chambers D. P., M. E. Tamisiea, R. S. Nerem, and J C. Ries, Effects of ice melting on GRACE observations of ocean mass trends, Geophys. Res. Lett., 34, L05610, doi:10.1029/2006GL029171, 2007
    Chambers D. P., Evaluation of new GRACE time-variable gravity data over the ocean, Geophys. Res. Lett., 33, L17603, doi:10.1029/2006GL027296, 2006a.
    Chambers D. P., Observing seasonal steric sea level variations with GRACE and satellite altimetry, J. Geophys. Res., 111, C03010, doi:10.1029/2005JC002914, 2006b.
    Chambers D. P., J. Wahr, and R. S. Nerem, Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, L13310, doi:10.1029/2004GL020461, 2004
    Chen, J. L., M. Rodell, C. R. Wilson, and J. S. Famiglietti, Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates, Geophys. Res. Lett., 32, L14405, doi: 10.1029/2005GL022964, 2005.
    Chen J. L., C. R. Wilson, B. D. Tapley, and J. C. Ries, Low degree gravitational changes from GRACE: Validation and interpretation, Geophys. Res. Lett., 31, L22607, doi:10.1029/2004GL021670, 2004
    Chen, J. L., C. R. Wilson, R. J. Eanes, and R. S. Nerem, Geophysical interpretation of observed geocenter variations, J. Geophys. Res., 104 (B2) , 2683– 2690, 1999.
    Cretaux, J.-F., L. Soudarin, F. J. M. Davidson, M.-C. Gennero, M. Berge-Nguyen, and A. Cazenave, Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data, J. Geophys. Res., 107 (B12), 2374, doi: 10.1029/2002JB001820, 2002.
    Davis J. L., P. Elósegui, J. X. Mitrovica, and M. E. Tamisiea, Climate-driven deformation of the solid Earth from GRACE and GPS, Geophys. Res. Lett., 31, L24605, doi:10.1029/2004GL021435, 2004
    Dobslaw, H., and M. Thomas, Simulation and observation of global ocean mass anomalies, J. Geophys. Res., 112, C05040, 2007.
    Dong D., J. O. Dickey, Y. Chao and M. K. Cheng, Geocenter variations caused by atmosphere, ocean and surface ground water, Geophys. Res. Lett., 24, 15, 1867-1870, 1997.
    Eanes, R. J., S. Kar, S. V. Bettadpur, and M. M. Watkins , Low frequency geocenter motion determined from SLR tracking (abstract), Eos Trans. AGU, 78(46), Fall Meet. Suppl., F146, 1997.
    Guo, J. Y., Y. B. Li, Y. Huang, H. T. Deng, S. Q. Xu, and J. S. Ning, Green’s function of the deformation of the Earth as a result of atmospheric loading, Geophys. J. Int., 159, 53–68, doi:10.1111/j.1365-246X.2004.02410.x, 2004.
    Hofmann-Wellenhof B. and H. Moritz, Physical geodesy, Springer Wien New York, 3-14, 2006
    Ishii, M., M. Kimoto, K. Sakamoto, and S. I. Iwasaki, Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses, J. Oceanogr., 62, 155–170, 2006.
    Keiskanen, W. A., and H. Moritz, Physical Geodesy, W. H. Freeman, New York, 1967.
    Klemann, V. and Z. Martinec, Contribution of glacial-isostatic adjustment to the geocenter motion, Tectonophysics, doi:10.1016/j.tecto.2009.08.031, 2009.
    Kuo, C. Y., C. K. Shum, J. Y. Guo, Y. Yi, A. Braun, I. Fukumori, K. Matsumoto, T. Sato, and K. Shibuya, Southern Ocean Mass Variation Studies Using GRACE and Satellite Altimetry, Earth, Planets and Space, 60, 477-485, 2008.
    Kusche J. and E. J. O. Schrama, Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data, J. Geophys. Res. 110, B09409, doi:10.1029/2004JB003556, 2005.
    Kuzin S. P., S. K. Tatevian, S. G. Valeev, and V. A. Fashutdinova, Studies of the geocenter motion using 16-years DORIS data, Advances in Space Research, doi: 10.1016/j.asr.2010.06.038, 2010.
    Longuevergne L., B. R. Scanlon, and C. R. Wilson, GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA, Water Resour. Res., 46, W11517, doi:10.1029/2009WR008564, 2010.
    Munekane H., Ocean mass variations from GRACE and tsunami gauges, J. Geophys. Res., 112, B07403, doi:10.1029/2006JB004618, 2007.
    Pattullo, J., W. Munk, R. Revelle, and E. Strong, The seasonal oscillation in sea level, J. Mar. Res., 88-156, 1955.
    Paulson A., S. Zhong, and J. Wahr, Inference of mantle viscosity from GRACE and relative sea level data, Geophys. J. Int., 171, 497–508 doi: 10.1111/j.1365-246X.2007.03556.x, 2007
    Rietbroek, R., J. Kusche, C. Dahle, R. Schmidt, F. Flechtner, J. Schröter, M.J.F. Jansen, B. Gunter, C. Böning, and S. Brunnabend, Surface mass estimation from GPS site displacements, modeled Ocean bottom pressure and GRACE, Geophysical Research Abstracts, 10, EGU2008-A-07928, 2008
    Rosmorduc, V., J. Benveniste, E. Bronner, S. Dinardo, O. Lauret, C. Maheu, M. Milagro and N. Picot, Radar Altimetry Tutorial, CSL, 2011.
    Seeber, G., Satellite geodesy: foundations, methods, and applications-2nd completely rev. and extended ed., Walter de Gruyter, 2003.
    Stewart R. H., Introduction To Physical Oceanography, Texas A&M University, 7-20, 2008.
    Swenson S., D. P. Chambers, and J. Wahr, Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B08410, doi:10.1029/2007JB005338, 2008.
    Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, GRACE measurements of mass variability in the Earth system, Science, 305, 503-505, 2004a.
    Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, The Gravity Recovery and Climate Experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, 10.1029/2004GL019920, 2004b.
    Thomas, M., Ocean induced variations of Earth's rotation - Results from a simultaneous model of global circulation and tides, PhD dissertation, University of Hamburg, Germany, 129pp, 2002.
    Wahr, J., M. Molenaar, and F. Bryan, Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103 (B12), 30, 205-30, 229, 1998.
    Wu X. P., M. B. Heflin, H. Schotman, B. L. A. Vermeersen, D. Dong, R. S. Gross, E. R. Ivins, A. W. Moore and S. E. Owen, Simultaneous estimation of global present-day water transport and glacial isostatic adjustment, Nature Science,3, 642-646, doi: 10.1038/NGEO938, 2010.
    Zheng W., C. G. Shao, J. Luo, and H. Xu, Improving the accuracy of GRACE Earth’s gravitational field using the combination of different inclinations, Natural Science, 18, Issue 5, Pages 555–561, 10 May 2008

    下載圖示 校內:2014-02-17公開
    校外:2014-02-17公開
    QR CODE