簡易檢索 / 詳目顯示

研究生: 黃宜婷
Huang, Yi-Ting
論文名稱: 適用於全自動虛擬量測系統的自動化資料品質評估架構
Automatic Data Quality Evaluation for the AVM System
指導教授: 鄭芳田
Cheng, Fan-Tien
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 67
中文關鍵詞: 全自動虛擬量測系統自動化資料品質評估製程資料品質評估指標量測資料品質評估指標自適應共振理論
外文關鍵詞: Automatic virtual metrology (AVM), automatic data quality evaluation, process data quality index (DQIX), metrology data quality index (DQIy), adaptive resonance theory 2 (ART 2).
相關次數: 點閱:142下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個適用於全自動虛擬量測系統的自動化資料品質評估架構,此架構包括了製程資料品質評估指標及量測資料品質評估指標。製程資料品質評估指標為將收集到的製程資料,利用主成份分析擷取出資料特徵,再以歐氏距離整合成一綜合指標。其次,量測資料品質評估指標為採用自適應共振理論2與標準變異數方法計算而得。同時,必須自動訂定製程及量測資料品質評估指標的門檻值,若資料品質評估指標值大於其門檻值,代表資料為異常。應用此架構於半導體與TFT-LCD廠的全自動虛擬量測系統上,能夠線上即時地自動評估製程資料與量測資料的好壞,避免異常資料被重新訓練或調校至虛擬量測模型內,以便保持虛擬量測的準確性。在量測資料品質評估方法中,以自適應共振理論2為基礎,依據製程資料的相似性,分出不同的群組,而後計算對應的量測資料的品質統計量。
    然而,實務應用上,傳統適應共振理論2仍有無法精確地分類製程資料之情況發生,使得群組內的製程資料並不相似,但卻被分在同一群裡;致造成該群對應的量測資料會有二群(或以上)的現象,如此可能會造成量測資料品質評估指標偵測能力失效。有鑑上述的問題,本論文亦提出進階適應共振理論2,以便藉強化相似度比對和自動尋優相關參數等功能,來改善原量測資料品質評估指標的偵測能力。
    本論文以實際在TFT-LCD廠運作的CVD、黃光、與彩色濾光片生產機台為例,來驗證本自動化資料品質評估架構的效益。由驗證結果綜合本論文提出的資料品質評估架構確實有效且可行。

    This dissertation proposes the schemes of automatic process and metrology data-quality evaluations for the automatic virtual metrology (AVM) system. Firstly, principal component analysis (PCA) is applied to extract data features of all the collected equipment process data; then Euclidean distance (ED) is utilized to unify all the principal components into a single index denoted process data quality index (DQIX) for evaluating the quality of process data. Secondly, adaptive resonance theory 2 (ART2) and normalized variability (NV) are applied to define the metrology data quality index (DQIy) for appraising the quality of metrology data. The thresholds of both DQIX and DQIy are also defined and can be adaptively calculated. The DQIX and DQIy data quality evaluation schemes are well-suited for the AVM systems of the semiconductor and TFT-LCD industries to on-line, real-time, and automatically evaluate the quality of all the collected process and metrology data. As such, abnormal data will not be adopted for VM model training or tuning and VM conjecture accuracy can be maintained.
    The DQIy algorithm is based on ART2. ART2 divides data into different patterns according to the similarity of process data, and then calculates the corresponding DQIy value and its threshold, DQIyT, for evaluation and judgment. However, in practical applications, the classical ART2 technique still could not cluster process data very precisely. Since some samples with dissimilar process parameters might be sorted into the same cluster, two or more groups could be found in the corresponding metrology-data cluster. This phenomenon may cause invalid DQIy detection. To solve the problem above, the advanced ART2 scheme is also proposed in this dissertation to enhance the accuracy of the DQIy algorithm.
    The actual CVD, photo, and color-filter production tools of a TFT-LCD factory were adopted as illustrative examples to verify the practicality of the proposed schemes. Experimental results show that the performance of the schemes is indeed effective and feasible.

    摘 要 I ABSTRACT II 致 謝 III ACKNOWLEDGEMENTS IV FIGURE CONTENTS VII TABLE CONTENTS VIII CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Organization 4 CHAPTER 2 AUTOMATIC DATA QUALITY EVALUATION FOR THE AVM SYSTEM 5 2.1 Introduction 5 2.2 Advanced Dual-Phase Virtual Metrology Scheme 7 2.3 Operating Procedures for Creating the First DQIX and DQIy Models 11 2.3.1 The First DQIX Model 15 2.3.2 The First DQIy Model 16 2.4 Abnormal Data Analysis 16 2.4.1 Abnormal Process-Data Analysis 17 2.4.2 Abnormal Metrology-Data Analysis 18 2.6 On-Line and Real-Time DQIX Algorithm 19 2.7 On-Line and Real-Time DQIy Algorithm 21 2.8 Illustrative Examples 25 2.8.1 DQIX Illustrative Example 25 2.8.2 DQIy Illustrative Example 28 CHAPTER 3 ADVANCED ART2 SCHEME FOR ENHANCING METROLOGY-DATA-QUALITY EVALUATION 32 3.1 Introduction 32 3.2 Why ART2 Adopted 34 3.3 Advanced ART2 Scheme 36 3.3.1 Classical ART2 37 3.2.2 Advanced ART2 41 3.3 Implementation Comparison between Classical ART2 andAdvanced ART2 48 3.4 Clustering Validation 48 3.5 Illustrative Examples 50 3.5.1 Illustrative Example 1 51 3.5.2 Illustrative Example 2 54 CHAPTER 4 SUMMARY AND CONCLUSIONS 59 ABBREVIATION LIST 60 REFERENCES 62 BIOGRAPHY 65 PUBLICATION LISTS 66

    [1] T.-H. Lin, M.-H. Hung, R.-C. Lin, and F.-T. Cheng, “A Virtual Metrology Scheme for Predicting CVD Thickness in Semiconductor Manufacturing,” in Proc. 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, U.S.A., pp.1054-1059, May 2006.
    [2] F.-T. Cheng, H,-C. Huang, and C.-A Kao, “Developing an Automatic Virtual Metrology System,” IEEE Transactions on Automation Science and Engineering, vol. 9, no. 1, pp. 181-188, January 2012.
    [3] F.-T. Cheng, J. Y.-C. Chang, H.-C. Huang, C.-A. Kao, Y.-L. Chen, and J.-L. Peng, “Benefit Model of Virtual Metrology and Integrating AVM into MES,” IEEE Transactions on Semiconductor Manufacturing, vol. 24, no. 2, pp. 261-272, May 2011.
    [4] F.-T. Cheng, H.-C. Huang, and C.-A. Kao, “Dual-Phase Virtual Metrology Scheme,” IEEE Transactions on Semiconductor Manufacturing, vol. 20, no. 4, pp. 566-571, November 2007.
    [5] F.-T. Cheng, Y.-T. Chen, Y.-C. Su, and D.-L. Zeng, “Evaluating reliance level of a virtual metrology system, ” IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 1, pp. 92-103, Feb. 2008.
    [6] G. Spitzlsperger, C. Schmidt, G. Ernst, H. Strasser, and M. Speil, “Fault Detection for a Via Etch Process Using Adaptive Multivariate Methods,” IEEE Transactions on Semiconductor Manufacturing, vol. 18, no. 4, pp. 528-533, Nov. 2005.
    [7] C. J. Spanos, H. F. Guo, A. Miller, and J. Levine-Parrill, “Real-Time Statistical Process Control Using Tool Data,” IEEE Transactions on Semiconductor Manufacturing, vol. 5, no. 4, pp. 308-318, Nov. 1992.
    [8] R. R. Azencott, “A Method for Monitoring a System Based on Performance Indicators,” Miriad Technol., 2003, U.S. Patent US6594618.
    [9] J. Lacaille and M. Zagrebnov, “An Unsupervised Diagnosis for Process Tool Fault Detection: The Flexible Golden Pattern,” IEEE Transactions on Semiconductor Manufacturing, vol. 20, no. 4, pp. 355-363, Nov. 2007.
    [10] T. W. Anderson, “Asymptotic Theory for Principal Component Analysis,” Ann. Math. Statist., vol. 34, pp. 122–148, 1963.
    [11] K. A Chamness, “Method and System of Diagnosing a Processing System Using Adaptive Multivariate Analysis,” Tokyo Electro Limited., 2008, U.S. Patent US7328126.
    [12] J. Dattorro, Convex Optimization & Euclidean Distance Geometry, Meboo, 2005.
    [13] G. A. Carpenter & S. Grossberg, “ART 2: Self-Organization of Sable Category Recognition Codes for Analog Input Patterns,” Applied Optics, vol. 26, no.12, pp.4919-4930, Dec 1987.
    [14] G. A. Carpenter & S. Grossberg, “A Massively Parallel Architecture for A Self-Organizing Neural Pattern Recognition Machine”, Computer Vision Graphics Image Processing, vol.13, Issue 7, pp.37-54, July 1987.
    [15] Y.-T. Huang, and F.-T. Cheng, “Automatic Data Quality Evaluation For the AVM System,” IEEE Transactions on Semiconductor Manufacturing, vol. 24, no. 3, pp. 445-454, August 2011.
    [16] Y.-C. Su, T.-H. Lin, F.-T. Cheng, and W.-M. Wu, “Accuracy and Real-Time Considerations for Implementing Various Virtual Metrology Algorithms,” IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 3, pp. 426-434, August 2008.
    [17] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, San Francisco, CA: Morgan Kaufman, 2005.
    [18] J. W. Tukey, Exploratory Data Analysis. Addison-Wesley, Reading, Massachusetts, 1977.
    [19] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Yee, Probability and Statistics for Engineers and Scientists (7th Edition), Prentice Hall, 2002.
    [20] C.-T. Su and Y.-H. Hsiao, “An Evaluation of the Robustness of MTS for Imbalanced Data,” IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 10, pp. 321-332, October 2007.
    [21] M.-H. Hung, T.-H. Lin, F.-T. Cheng, and R.-C. Lin, “A Novel Virtual Metrology Scheme for Predicting CVD Thickness in Semiconductor Manufacturing,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 3, pp. 308-316, June 2007.
    [22] T.-H. Lin, F.-T. Cheng, W.-M. Wu, C.-A. Kao, A.-J. Ye, and F.-C. Chang, “NN-based Key-variable Selection Method for Enhancing Virtual Metrology Accuracy,” IEEE Transactions on Semiconductor Manufacturing, vol. 22, no. 1, pp. 204-211, February 2009.
    [23] W.-M. Wu, F.-T. Cheng, T.H. Lin, D.-L. Zeng, and J.-F. Chen, “Selection Schemes of Dual Virtual-Metrology Outputs for Enhancing Prediction Accuracy,” IEEE Transactions on Automation Science and Engineering, vol. 8, no. 2, pp. 311-318, April 2011.
    [24] W. A. Shewhart, Economic Control of Quality of Manufactured Product, New York: Van Nostrand, 1931.
    [25] A. Weber, “Virtual Metrology and Your Technology Watch List: Ten Things You Should Know about This Emerging Technology,” Future Fab International, issue 22, section 4, pp. 52-54, Jan. 2007.
    [26] H. G. Wilson, B. Boots , and A. A. Millward, “A Comparison of Hierarchical and Partitional Clustering Techniques for Multispectral Image Classification” in Proc. 2002 Geoscience and Remote Sensing Symposium (IGARSS 2002), pp1624-1626, June 2002.
    [27] E. Gose, R. Johnsonbaugh, and S. Jost, Pattern Recognition and Image Analysis, New Delhi: Prentice Hall of India, 2000.
    [28] J. R. Whiteley, J. F. Davis, A. Mehrotra, and S. C. Ahalt, “Observations and Problems Applying ART2 for Dynamic Sensor Pattern Interpretation,” IEEE Transaction on System Man And Cybernetics - Part A: System And Humans, vol. 26, no. 4, pp.423-437, July 1996.
    [29] L. Li, B. Zhang, and Y. Che, “The Improved Algorithm of ART2 in Data Mining,” in Proc. 2009 First International Workshop on Database Technology and Applications, pp.177-180, 2009.
    [30] D. R. Anderson, D. J. Sweeney, T. A. Williams, and J-C Chen, Statistics for Business and Economics - A Practical Approach, Thomson Learning, 2006.
    [31] M. Halkidi, , Y. Batistakis, and M. Vazirgiannis, “Clustering validity checking methods: part II,” ACM SIGMOD Record, vol. 31 n.3, Sept, 2002.
    [32] P.J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53-65, 1987.

    下載圖示 校內:2015-05-03公開
    校外:2015-05-03公開
    QR CODE