簡易檢索 / 詳目顯示

研究生: 葉芊佑
Yeh, Chien-Yu
論文名稱: 基於食藥物知識圖譜之大腸鏡衛教機器人
A Patient Education Chatbot for Colonoscopy Based on Food and Medicine Knowledge Graph
指導教授: 盧文祥
Lu, Wen-Hsiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 30
中文關鍵詞: 大腸鏡衛生教育聊天機器人知識圖譜自然語言處理
外文關鍵詞: Colonoscopy, Patient Education, Chatbot, Knowledge Graph, NLP
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醫院藥局的藥師是作為專業醫師與民眾之間的重要角色,而用藥的衛教也 是醫院藥師專業服務的重要業務。近年來預防醫學的提倡,許多檢查與衛教的 需求量日漸提升,尤其是以大腸鏡為大宗,大腸鏡檢查亦是作為早期檢測大腸 癌的方法,早期發現與治療可以降低死亡率。
    根據醫院藥師的統計,對於每一位民眾所作的大腸鏡檢查,需考量每個人 的個別因素,因此需要花費數十分鐘的解釋。如何應用人工智慧技術來提供多 元化的服務、有效率的解決需求,將是對社會非常重要的貢獻。
    為了解決使用者的大腸鏡衛生教育提問,本篇論文提供了一種分析 Intent 的方法,藉由抽取問句中的 Q-V-F-M-O-T 結構來分析大腸鏡衛教之相關問題, 且透過 Knowledge Graph 和 Template-based Answers 作為回答的知識庫,並 建立一個 iOSApp 讓使用者可以即時的詢問,並給予回答。
    最後,經測試隨機收集的 220 句問句,有 83% 的問題是可以被準確回答。 此外,我們隨機挑選了二十位使用者,進行論文系統的場域測試。於結果顯示, 使用者評分對於系統資訊的充足度平均為 3.8 分,回答的答案可讀性平均為 4.2 分,信任度平均為 4 分,使用體驗平均為 3.85 分,其中滿分為 5 分。

    Hospital pharmacists play an important role and education for medication is also an important task. Nowadays, preventive healthcare has been promoted, and the demand for health examinations and patient education have been increasing, especially for colonoscopy which is a method for early detection of colorectal cancer. Early detection and treatment can reduce mortality.
    According to the statistics, pharmacist needs to consider each person's individual factors during the patient education of colonoscopy, so it usually takes ten minutes for a person. How to apply artificial intelligence technology to provide services and solve user needs is very important.
    In order to solve questions about colonoscopy from users, this paper provides a method to analyze intents by extracting Q-V-F-M-O-T structures in question sentences, using Knowledge Graph and Template-based Answers as a knowledge base for answers and we built an iOS application for user to ask questions and get corresponding answers.
    At the last, the system achieved a recall rate about 83% with random 220 questions. Furthermore, we randomly selected twenty users to do an actual testing and the results show that we scored an average of 3.8 points for the sufficiency of information, 4.2 points for the answer readability, 4 points for trust level, and 3.85 points for user experience which the full score is 5 points.

    摘要 I Abstract II 致謝 III Table of Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 1 1.3 Method 3 1.4 Contribution 3 Chapter 2 Related Work 4 2.1 Studies on Question Pattern Extraction 4 2.2 Studies on Natural Language Understanding 4 2.3 Studies on Natural Language Generation 5 Chapter 3 Method 6 3.1 System Architecture 6 3.2 Data Collection 8 3.2.1 Medicine Lexicons 8 3.2.2 Food Lexicons 9 3.2.3 Patient Education Sheets for Colonoscopy 9 3.2.4 Frequently Asked Questions for Patients 10 3.3 Data Preprocessing 10 3.4 Food and Medicine Knowledge Graph 11 3.5 Natural Language Understanding Module 12 3.5.1 Name Entity Recognition 12 3.5.2 Training Data Expansion 12 3.5.3 Intent Pattern Extraction 14 3.5.4 Topic Classification 14 3.5.5 Intent Classification 15 3.6 Natural Language Generation Module 18 Chapter 4 Experiments 19 4.1 Dataset 19 4.2 Evaluation Metrics 19 4.3 Performance Evaluation of Name Entity Recognition 20 4.3.1 Experiment Result 20 4.3.2 Result Analysis 21 4.4 Performance Evaluation of Topic Classification 22 4.4.1 Experiment Result 22 4.4.2 Result Analysis 23 4.5 Performance Evaluation of Intent Classification 24 4.5.1 Experiment Result 24 4.5.2 Result Analysis 25 4.6 Effectiveness Verification 26 4.6.1 Verification Setup 26 4.6.2 Verification Result 26 Chapter 5 Conclusion and Future Work 28 5.1 Conclusion 28 5.2 Future Work 28 Chapter 6 References 29

    [1] Patient Education Sheets for Colonoscopy from JEN-AI Hospital, Taiwan. Available:
    https://health.jah.org.tw/content/index.asp?m=1&m1=4&m2=107&gp=105
    [2] P.-Y. Chiu, A Health-Advisory Chatbot Based on Relation Path Searching of Healthcare Knowledge Base, 2020.
    [3] J.C. Cai, Summary Generation for Chinese Patient Complaint based on Medical Entity Recognition and Medical Terminology Mapping, 2019.
    [4] HanLP. Available: https://www.hanlp.com/
    [5]台灣食品成分資料庫 2020 版(UPDATE2), Taiwan Food and Drug Administration, [Online]. Available: https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178
    [6] 西藥、醫療器材及化粧品許可證查詢, Taiwan Food and Drug Administration, [Online]. Available: https://info.fda.gov.tw/mlms/H0001.aspx
    [7] UpToDate, [Online]. Available:
    https://www.uptodate.com/contents/perioperative-management-of-patients-receiv ing-anticoagulants/print
    [8] ATC Code, Wikipedia, [Online]. Available:
    https://en.wikipedia.org/wiki/Anatomical_Therapeutic_Chemical_Classification _System
    [9] Neo4j, Neo4j, Inc., [Online]. Available: https://neo4j.com 29
    [10] Cypher, Neo4j, Inc., [Online]. Available:
    https://neo4j.com/developer/cypher/
    [11] 詞法分析之 Bi-LSTM-CRF 框架, [Online]. Available: https://www.twblogs.net/a/5b7c79642b71770a43db24a5
    [12] 如何辨別機器學習模型的好壞?秒懂, Confusion Matrix, [Online]. Available: https://www.ycc.idv.tw/confusion-matrix.html

    無法下載圖示 校內:2026-08-27公開
    校外:2026-08-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE