簡易檢索 / 詳目顯示

研究生: 王筠婷
Wang, Yun-Ting
論文名稱: 可控制降解型聚乳酸/純鎂/磷酸鈣複合材料之機械性質與生醫應用特性探討
A Study on Mechanical Properties and Biomedical Application Characteristics of Degradable PLA/Mg/Ca3(PO4)2 Composite
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 116
中文關鍵詞: 聚乳酸磷酸鈣機械性質降解特性生物相容性
外文關鍵詞: polylactic acid, magnesium, calcium phosphate, mechanical properties, degradation characteristics, biocompatibility
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚乳酸屬於可降解型之生醫高分子材料,在生物力學、生物可降解性以及生物相容性等方面都具有良好的性質,其中的可降解性更能避免需二次開刀取出植入材的痛苦。然而,因聚乳酸有降解速率緩慢、生物活性不佳以及骨誘導性不足的缺點,這些都是聚乳酸作為骨組織工程應用上待克服的問題。因此,本研究設計以純鎂與磷酸鈣粉末作為添加相,藉此加速整體複合材料的降解速率,同時也利用鎂與磷酸鈣降解後釋放的離子效應,提升複合材料的生物活性與骨誘導性,並進一步探討其機械性質與生物特性。
    本研究選用聚乳酸、純鎂粉末以及磷酸鈣粉末形成三相複合之可降解型生醫材料,藉由不同比例的粉體添加來探討其對於複合材料性質之影響,並透過拉伸試驗、衝擊試驗與硬度試驗評估材料機械性質。為了解其生物降解特性,以生理食鹽水及模擬人工體液進行浸泡試驗並測量pH值,最後透過細胞毒性試驗檢視複合材料的生物相容性。
    根據試驗結果,有粉體添加的複合材料之拉伸強度與衝擊強度均下降,延性僅存在於少部份的添加配比;而各添配條件之楊氏係數均符合人骨範圍,能避免因應力遮蔽效應所產生之傷害;硬度方面則因粉末分散強化效應而有些微提升。綜合以上機械性質與應用研究目的考量,以PLA10M10C (10wt.% Mg, 10wt.% Ca3(PO4)2)之表現最佳。
    在生物降解試驗中,添加純鎂與磷酸鈣粉末會使整體複合材料加速降解,並形成多孔性的表面形貌,生成具有生物相容性之單鈣磷酸、三鈣磷酸以及磷酸鈣鎂等鹽類,能有助於骨組織的癒合與新生。在降解試驗的綜合性評估下,仍以PLA10M10C之表現最佳。生物相容性試驗則顯示,本研究所聚焦之四組材料 (PLA, PLA20M, PLA20C, PLA10M10C)均屬於0級細胞毒性 (No cytotoxic),表示對組織細胞不會產生毒性反應,符合生物安全性之評估。根據本研究系統,可提供新型可降解生醫複合材料PLA10M10C於骨科植入材應用參考。

    Polylactic acid is a biodegradable polymer with good properties in biomechanics, biodegradability and biocompatibility. However, it has disadvantages of slow degradation rate, poor bioactivity and insufficient osteoconductivity, which are problems need to be solved in the application of bone tissue engineering. Therefore, this study try to design a three-phase biomedical composite which composed of polylactic acid, magnesium and calcium phosphate. The effect of the composite with different proportions of powder addition was investigated by mechanical tests, degradation test and biocompatibility tests.
    The results show that additional powder will decrease the tensile and impact properties of the composite, but Young’s modulus are all within the range of human bone which can avoid the stress shielding effect. Hardness is slightly increase by the effect of dispersion strengthening of powder.
    In addition, the degradation rate and biological properties are both enhanced by magnesium and calcium phosphate. The degradation products such as monocalcium phosphate, tricalcium phosphate and calcium magnesium phosphate are all biocompatible salts and have the ability to promote bone tissue healing and renew. Also, the biocompatibility tests show that the composites have no cytotoxicity and the surfaces are good environments for cells to spread and proliferate.
    All in all, under the comprehensive evaluation, PLA10M10C (Mg 10wt.%, Ca3(PO4)2 10wt.%) is the most suitable biodegradable composite for orthopedic implants in this study.

    總目錄 中文摘要 I Abstract III 致謝 IV 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 前言 1 第二章 文獻回顧 3 2-1 生醫材料 3 2-1-1 生醫材料的定義 3 2-1-2 生醫材料的發展 3 2-2 生醫材料的分類 4 2-2-1 金屬材料 5 2-2-2 陶瓷材料 5 2-2-3 高分子材料 5 2-2-4 複合材料 6 2-3 生醫用聚乳酸特性 6 2-4 生醫用聚乳酸應用限制 8 2-5 鎂醫材與鎂粉應用 9 2-6 磷酸鈣特性與添加效應 11 2-7 研究目的 12 第三章 實驗方法與步驟 20 3-1 實驗架構 20 3-2 微觀組織分析 20 3-3 相組成分析 21 3-4 化學組成分析 21 3-5 機械性質試驗 21 3-5-1 拉伸試驗 21 3-5-2 衝擊試驗 22 3-5-3 硬度試驗 22 3-6 浸泡試驗 22 3-6-1 體外降解試驗 22 3-6-2 體外仿生試驗 23 3-6-3 pH值試驗 25 3-7 細胞相容性試驗 25 3-7-1 細胞毒性試驗 25 第四章 結果與討論 33 4-1 複合材料特性探討 33 4-1-1 微觀組織中粉末比率定量分析 33 4-1-2 傅立葉轉換紅外光譜分析 33 4-1-3 X光繞射光譜分析 34 4-2 機械性質探討 34 4-2-1 拉伸試驗 34 4-2-2 硬度試驗 37 4-2-3 衝擊試驗 37 4-3 體外浸泡試驗後性質探討 38 4-3-1 體外降解試驗 38 4-3-2 體外仿生試驗 42 4-4 細胞相容性探討 45 4-4-1 細胞毒性試驗 45 4-5 實際射出成形應用 46 4-5-1 體外降解及仿生試驗 46 第五章 結論 108 參考文獻 111

    1. Leong, K.W., "Biomaterials." Elsevier 188-225 (1980): 1.
    2. Hench, L.L., Thompson, I., "Twenty-first century challenges for biomaterials." Journal of the Royal Society Interface (2010): 379-391.
    3. Navarro ,M., Michiardi, A., Castano, O., and Planell, J. A., "Biomaterials in orthopaedics." Journal of the Royal Society Interface 5.27 (2008): 1137-1158.
    4. Niinomi, M., "Recent metallic materials for biomedical applications." Metallurgical and materials transactions A 33.3 (2002): 477-486.
    5. Geetha, M., Singh, A.K., Asokamani, R. and Gogia, A.K., "Ti based biomaterials, the ultimate choice for orthopaedic implants - a review." Progress in materials science 54.3 (2009): 397-425.
    6. Pramanik, S., Agarwal, A.K. and Rai1, K.N., "Chronology of Total Hip Joint Replacement and Materials Development." Trends in Biomaterials and Artificial Organs 19(1) (2005): 15-25.
    7. Boutin, P., Christel, P., Dorlot, J.M., Meunier, A., DeRoquancourt, A., Blanquaert, D., Herman, S. and Sedel, L., "The use of dense alumina–alumina ceramic combination in total hip replacement." Biomedical Materials Research 22(12) (1988): 1203-1232.
    8. Piconi, C. and Maccauro, G., "Zirconia as a ceramic biomaterial." Biomaterials 20 (1999): 1-25.
    9. Cao, W., and Hench, L.L., "Bioactive materials." Ceramics international 22.6 (1996): 493-507.
    10. Rabiee, S.M., Moztarzadeh, F. and Solati-Hashjin, M., "Synthesis and characterization of hydroxyapatite cement." Journal of Molecular Structure 969 (2010): 172-175.
    11. Furlong, R.J. and Osborn, J.F., "Fixation of hip prostheses by hydroxyapatite ceramic coatings." Bone and Joint Surgery 77A(5) (1991): 903-910.
    12. Frazza, E.J. and Schmitt, E.E., "A new absorbable suture." Biomedical Materials Research 5 (1971): 43-58.
    13. Walczak, J., Shahgaldi, F. and Heatley, F., "In vivo corrosion of 316L stainless-steel hip implants: morphology and elemental compositions of corrosion products." Biomaterials 19 (1998): 229-237.
    14. Davies, J.R., Handbook of Materials for Medical Devices, ASM International (2003): 21-50.
    15. Tahriri, M., Bader, R., Yao, W., Dehghani, S., Khoshroo, K., Rasoulianboroujeni, M. and Tayebi, L., "Bioactive glasses and calcium phosphates." Biomaterials for Oral and Dental Tissue Engineering (2017): 7-24.
    16. Boger, A., Bohner, M., Heini, P., Verrier, S. and Schneider, E., "Properties of an injectable low modulus PMMA bone cement for osteoporotic bone." Biomedical Materials Research 86B (2) (2008): 474-482.
    17. Cipriano, T.F., Silva, A.L.N.D., Fonseca, A.H.M.D. and Silva, T.D., "Thermal, rheological and morphological properties of poly (Lactic Acid) (PLA) and talc composites." Polímeros 24 (2014): 276-282.
    18. Doi Y., Steinbüchel A., "Biopolymers, Applications and Commercial Products - Polyesters III." Wiley-VCH, Weiheim-Germany (2002): 410.
    19. Avérous, L. and Pollet, E., "Biodegradable Polymers." Environmental Silicate Nano-Biocomposites (2012): 13-39.
    20. Farah, S., Anderson, D.G. and Langer, R., "Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review." Advanced Drug Delivery Reviews 107 (2016):367-392.
    21. Nagels, J.M. and Rozing, P.M., "Stress shielding and bone resorption in shoulder arthroplasty." Journal of shoulder and elbow surgery 12.1 (2003): 35-39.
    22. Gogolewski, S., "Bioresorbable polymers in trauma and bone surgery." Injury 31 (2000): 28-32.
    23. Poinern, G.E.J., Brundavanam, S. and Fawcett, D., "Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant." American Journal of Biomedical Engineering 2 (2012): 218-240.
    24. Zhao, C., Wu, H., Ni, J., Zhang, S. and Zhang, X., "Development of PLA/Mg composite for orthopedic implant: Tunable degradation and enhanced mineralization." Composites Science and Technology 147 (2017): 8-15.
    25. Staiger, M.P., Pietak, A.M., Huadmai, J. and Dias, G., "Magnesium and its alloys as orthopedic biomaterials: a review" Biomaterials 27 (2006): 1728-1734.
    26. Easton, M., Beer, A., Barnett, M., Davies, C., Dunlop, G. and Durandet, Y., "Magnesium Alloy Applications in Automotive Structures." The Minerals, Metals & Materials Society 60 (2008):57-62.
    27. Kotoka, R., Konchady, M., Ramakrishnan, G., Yarmolenko, S., Pai, D. and Sankar, J., "High throughput corrosion screening of Mg-Zn combinatorial material libraries." Materials and Design 108 (2016): 42-50.
    28. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press (US), (1997)
    29. Vormann, J., "Magnesium: nutrition and metabolism." Molecular aspects of medicine 24.1-3 (2003): 27-37.
    30. Zheng, Y., "Magnesium alloys as degradable biomaterials." CRC Press (2015)
    31. Saris, N.E.L., Mervaala, E., Karppanen, H., Khawaja, J.A. and Lewenstam, A., "Magnesium: An update on physiological, clinical and analytical aspects." Clinica Chimica Acta 294 (2000): 1-26.
    32. Okuma, T., "Magnesium and bone strength." Nutrition17 (2001): 679-80.
    33. Jurgen, V., "Magnesium nutrition and metabolism." Molecular Aspects of Medicine 24 (2003): 27-37.
    34. Lin, D.J., Hung, F.Y., Jakfar, S. and Yeh, M.L., "Tailored coating chemistry and interfacial properties for construction of bioactive ceramic coatings on magnesium biomaterial." Materials and Design 89 (2016): 235-244.
    35. Pietak, A., Mahoney, P., Dias, G.J. and Staiger, M.P., "Bone-like matrix formation on magnesium and magnesium alloys." J Mater Sci Mater Med 19(1) (2008): 407-415.
    36. Sergey, V. D., "A detailed history of calcium orthophosphates from 1770s till 1950." Materials Science and Engineering 33 (2013): 3085-3110.
    37. Regí, M.V. and Calbet, J.M.G., "Calcium phosphates as substitution of bone tissues." Progress in Solid State Chemistry 32 (2004): 1-31.
    38. Shahram, G., Mike, B., Rainer, D., Ulrike, D., Ulrike, H., Vera, R., Robert, S., Ronald, E.U., Guenter, Z. and Charles, J.K., "The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics." Biomedical Materials 7 (2012).
    39. Canillas, M., Pena, P., Aza, A.H. and Rodríguez, M.A., "Calcium phosphates for biomedical applications." Boletín de la Sociedad Española de Cerámica y Vidrio 56 (2017): 91-112.
    40. Geros, R.Z.L., "Calcium Phosphate-Based Osteoinductive Materials." Chemical Reviews (2008): 4742-4753.
    41. Cheng, L., Ye, F., Yang, R., Lu, X., Shi, Y., Li, L., Fan, H. and Bu, H., "Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula." Acta Biomaterialia 6 (2010): 1569-1574.
    42. Oyane, A., Kim, H.M., Furuya, T., Kokubo, T., Miyazaki, T. and Nakamura, T., "Preparation and assessment of revised simulated body fluids." J Biomed Mater Res A (2003): 188-195.
    43. Motoyama, T.,, Tsukegi, T., Shirai, Y., Nishida, H. and Endo, T., "Effects of MgO catalyst on depolymerization of poly-l-lactic acid to l,l-lactide." Polymer Degradation and Stability 92 (2007): 1350-1358.
    44. Hong, Z., Qiu, X., Sun, J., Deng, M., Chen, X. and Jing, X., "Grafting polymerization of l-lactide on the surface of hydroxyapatite nano-crystals." Polymer 45 (2004): 6699-6706.
    45. Arun, K.V. and Jadhav, K.K., "Behaviour of Human Femur Bone Under Bending and Impact Loads." European Journal of Clinical and Biomedical Sciences (2016).
    46. Overgaard, S., Bromose, U., Lind, M., Bunger, C. and Soballe, K., "The influence of crystallinity of the hydroxyapatite coatings on the fixation of implants. Mechanical and histomorphometric result." J. Bone Jt.Surg. Br. 81 (1999): 725-731.
    47. Goldberg, M.A., Smirnov, V.V., Antonova, O.S., Khairutdinova, D.R., Smirnov, S.V., Krylov, A.I., Sergeeva, N.S., Sviridova, I.K., Kirsanova, V.A., Akhmedova, S.A., Zhevnenkoc, S.N. and Barinova, S.M., "Magnesium-substituted calcium phosphate bone cements containing MgO as a separate phase: synthesis and in vitro behavior." Mendeleev Communications 28 (2018): 329-331.
    48. Park, E.K., Lee, Y.E., Choi, J.Y., Oh, S.H., Shin, H.I., Kim, K.H., Kim, S.Y. and Kim, S., "Cellular biocompatibility and stimulatory effects of calcium metaphosphate on osteoblastic differentiation of human bone marrow-derived stromal cells." Biomaterials 25 (2004): 3403-3411.
    49. Song, G., "Control of biodegradation of biocompatable magnesium alloys." Corrosion Science 49 (2007): 1696-1701.

    下載圖示 校內:2025-04-15公開
    校外:2025-04-15公開
    QR CODE