簡易檢索 / 詳目顯示

研究生: 郭至恆
Kuo, Chih-Heng
論文名稱: 基於鋰離子電池組老化程度之四階段定電流充電法的研究
Research on Four-Stage Constant Current Charging Method Based on the Aging Degree of a Li-ion Battery Pack
指導教授: 李建興
Lee, Chien-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 電池老化程度內阻四階段定電流充電平衡電路
外文關鍵詞: DOA, internal resistance, four-stage-constant-current charging, balancing circuit
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以三顆鋰離子電池串聯成電池組進行充電實驗,並探討鋰離子電池組基於各顆電池不同老化程度,以最佳化四階段定電流充電電流乘以電池當前剩餘容量的百分比,作為其電池的充電機制,而進行電池組充電實驗之前,需先探討電池組的平衡電路。本論文實驗是以降壓式轉換器作為電池與電源供應器之間的平衡電路,基於設定其功率開關的導通率,配合電源供應器的輸出電流,用以尋找所對應之電池充電電流值。本論文會先透過建立開關導通率、電源供應器的輸出電流與電池充電電流間的轉換關係,之後,將各顆電池完整充放電用以得知當前電池的老化程度,再接著依電池當前老化程度、功率開關的導通率與電源供應器的輸出電流大小來設定各顆電池的充電電流值,進而對電池組進行四階段定電流的充電。

    In this thesis, three of lithium-ion batteries in series will be applied in the charging experiment, as aged lithium-ion batteries, they will be charged in the proportion of remaining capacity as considering the degree of aging (DOA). Before beginning the charging experiment, we should first discuss the balancing circuit of the batteries. This thesis selects a buck converter that is used as a connection between batteries and power supply. Based on the setting of the duty on MOSFET switches and the charging current of power supply, the corresponding charging current value can be found. In this thesis, one has to establish the relationship among the duty of MOSFET switches, the output current of power supply and the charging current of batteries. Then, the DOA of each battery can be determined via completely the charging and discharging processes. Next, the charging current value of each battery will be set according to the current aging degree of the battery, the conduction rate of the MOSFET switch and the output current of the power supply, so as to charge the battery pack with a four-stage constant current.

    摘要...i 誌謝...vi 目錄...vii 表目錄...x 圖目錄...xii 符號說明...xv 第一章 緒論...1 1.1 前言...1 1.2 研究動機與目的...2 1.3 文獻回顧...3 1.4 本論文之貢獻...7 1.5 論文之架構...8 第二章 鋰離子電池組平衡充電簡介...9 2.1 電池之特性...9 2.2 鋰離子電池簡介...12 2.3 鋰離子電池之充電方法...14 2.4 鋰離子電池等效電路...16 2.5 電池組電量平衡的探討...18 第三章 基於老化程度之四階段充電電流的選擇...24 3.1 多階段定電流充電簡介...24 3.2 電池老化程度估測...26 3.2.1 電池老化估測之方法...26 3.2.2 內阻法用於電池老化的估測...27 3.3 老化電池之充電電流的選擇...28 第四章 平衡電路應用於鋰離子電池組的充電...30 4.1 平衡充電電路...30 4.1.1 平衡充電機制...30 4.1.2 平衡電路選用...32 4.2 降壓轉換器工作原理...33 4.2.1 降壓轉換器操作模式...33 4.2.2 電池充電過程...33 4.3 充電電流與導通率的關係...35 4.3.1 電池組充電電流之選擇依據...35 4.3.2 串聯降壓式轉換器...36 4.3.3 並聯降壓式轉換器...42 第五章 平衡電路對四階段定電流充電的評估...46 5.1 充電電路之實驗配置...46 5.1.1 實驗儀器簡介...46 5.1.2 平衡電路配置...47 5.1.3 脈衝寬度調變訊號...49 5.1.4 光耦合元件...49 5.2 四階段定電流的充電實驗...50 5.2.1 電池組加入平衡電路與未加入平衡電路的架構...50 5.2.2 電池組加入平衡電路之四階段充電電流的計算...52 5.2.3 基於老化與非基於老化對電池充電的結果...53 第六章 結論與未來展望...72 6.1 結論...72 6.2 未來展望...72 參考文獻...74 附錄A...80

    [1] Y.-F. Luo, Y.-H. Liu, and S.-C. Wang, “Search for an optimal multistage charging pattern for lithium-ion batteries using the Taguchi approach,” TENCON 2009 - 2009 IEEE Region 10 Conference, Singapore, January 23-26, 2009.
    [2] Clean Technica, Electric cars cutting gasoline use by hundreds of millions of gallons a year (Retrieval date: June 2019):
    https://cleantechnica.com/2019/06/13/chart-electric-cars-cutting-gasoline-use-by-hundreds-of-millions-of-gallons-a-year/
    [3] 陳穩仲,“四階段定電流充電法於鋰離子電池之容量衰退的探討,”國立成功大學系統及船舶機電工程學系,碩士論文,民國107年7月。
    [4] L.-R. Chen, “Design of duty-varied voltage pulse charger for improving Li-ion battery-charging response,” IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 480-487, February 2009.
    [5] L.-R. Dung and J.-H. Yen, “ILP-based algorithm for lithium-ion battery charging profile,” 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, July 4-7, 2010.
    [6] F. Wang, N. Cui, and H. Fang, “Multi segment charging strategy for lithium ion battery based on Taguchi method,” 2017 Chinese Automation Congress, pp. 5057-5061, October 20-22, 2017.
    [7] A.-B. Khan, V.-L. Pham, T.-T. Nguyen, and W. Choi, “Multistage constant-current charging method for Li-Ion batteries,” 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific, Busan, South Korea, June 1-4, 2016.
    [8] J. W. Huang, Y. H. Liu, S. C. Wang, and Z. Z. Yang, “Fuzzy-control-based five-step Li-ion battery charger,” 2009 International Conference on Power Electronics and Drive Systems, Taipei, Taiwan, November 2-5, 2009.
    [9] C.-H. Lee, M.-Y. Chen, S.-H. Hsu, and J.-A. Jiang, “Implementation of an SOC-based four-stage constant current charger for Li-ion batteries,” Journal of Energy Storage, vol. 18, pp. 528-537, August, 2018.
    [10] S.-C. Wang, Y.-L. Chen, Y.-H. Liu, and Y.-S. Huang, “A fast-charging pattern search for li-ion batteries with fuzzy-logic-based Taguchi method,” IEEE 10th Conference on Industrial Electronics and Applications, Auckland, New Zealand, June 15-17, 2015.
    [11] 劉文懋,“雙向降升壓式電池電源模組串聯之雙向電量平衡電路,”國立臺灣海洋大學電機工程學系,碩士論文,民國101年6月。
    [12] 林易佑,“使用高串聯鋰鐵磷電池組之先進電池管理系統與電動車開發,”國立勤益科技大學電機工程系,碩士論文,民國100年7月。
    [13] M.-J. Isaacson, R.-P. Hollandsworth, P.-J. Giampaoli, F.-A. Linkowsky, A. Salim, and V.-L. Teofilo, “Advanced lithium ion battery charger,” Proceeding of the IEEE 15th Annual Battery Conference on Applications and Advances, pp. 193, Long Beach, CA, January 11-14, 2000.
    [14] 彭釉喆,“串並聯電池組之全平衡管理”,國立中興大學電機工程學系,碩士論文,民國102年7月。
    [15] E. Meissner, G. Richter, “Battery monitoring and electrical energy management: precondition for future vehicle electric power systems,” Journal of Power Sources, vol. 116, no. 1-2, pp. 79-98, July 1, 2003.
    [16] U. Tröltzsch, O. Kanoun, and H.-R. Tränkler, “Characterizing aging effects of lithium ion batteries by impedance spectroscopy,” Electrochimica Acta, vol. 51, no. 8-9, pp. 1664-1672, January 20, 2006.
    [17] S. Buller, M. Thele, E. Karden, and R.-W.-D. Doncker, “Impedance-based non-linear dynamic battery modeling for automotive applications,” Journal of Power Sources, vol. 113, no. 2, pp. 422-430, January 27, 2003.
    [18] Z. Chen, B. Xia, C.-C. Mi, and R. Xiong, “Loss-minimization-based charging strategy for lithium-ion battery,” IEEE Transactions on Industrial Applications, vol. 51, no. 5, September, 2015.
    [19] Z. Chen, Y. Fu, and C.-C. Mi, “State of charge estimation of lithium-ion batteries in electric drive vehicles using extended Kalman filtering,” IEEE Transactions on Vehicular Technology, vol. 62, pp. 1020-1030, December, 2013.
    [20] X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit models for Li-ion batteries,” Journal of Power Sources, vol. 198, pp. 359-367, January, 2012.
    [21] C.-H. Lee, Z.-Y. Wu, S.-H. Hsu, and J.-A. Jiang, “Cycle life study of li-ion batteries with an aging-level-based charging method,” IEEE Transactions on Energy Conversion, vol. 35, no. 3, pp. 1475-1484, September, 2020.
    [22] J. Vetter, P. Novák, M.-R. Wagner, C. Veit, K.-C. Möller, J.-O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, “Ageing mechanisms in lithium-ion batteries,” Journal of Power Sources, vol. 147, pp. 269-281, 2005.
    [23] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, and D. Riu, “A review on lithium ion battery ageing mechanisms and estimations for automotive applications,” Journal of Power Sources, vol. 241, pp. 680-689, November 1, 2013.
    [24] H.-G. Schweiger, O. Schweiger, O. Komesker, A. Raschke, M. Schiemann, C. Zehner, M. Gehnen, M. Keller, and P. Birke, “Comparison of several methods for determining the internal resistance of lithium ion cells,” Sensors, vol. 10, no. 6, pp. 5604-5625, 2010.
    [25] X.-Z. Wei, W. Xu, and D. Shen, “Internal resistance identification of Li-ion battery and its application in battery life estimation,” International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, Hunan, China, April 11-12, 2009.
    [26] J. Schiffer, D.-U. Sauer, H. Bindner, T. Cronin, P. Lundsager, and R. Kaiser, “Model prediction for ranking lead-acid batteries according to expected lifetime in renewable energy systems and autonomous power-supply systems,” Journal of Power Sources, vol. 168, no. 1, pp. 66-78, May 25, 2007.
    [27] M. Ecker, N. Nieto, S. Käbitz, J. Schmalstieg, H. Blanke, A. Warnecke, and D.-U. Sauer, “Calendar and cycle life study of Li(NiMnCo)N2-based 18650 lithium-ion batteries,” Journal of Power Sources, vol. 248, pp. 839-851, February, 2014.
    [28] P. Liu, J. Wang, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, and P. Finamore, “Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses,” Journal of the Electrochemical Society, vol. 157, no. 4, pp. A499-A507, 2010.
    [29] I. Bloom, B.-W. Cole, J.-J. Sohn, S.-A. Jones, E.-G. Polzin, V.-S. Battaglia, G.-L. Henriksen, C. Motloch, R. Richardson, T. Unkelhaeuser, D. Ingersoll, and H.-L. Case, “An accelerated calendar and cycle life study of Li-ion cells,” Journal of Power Sources, vol. 101, no. 2, pp. 238-247, October 15, 2001.
    [30] R. Kötz, P.-W. Ruch, and D. Cericola, “Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests,” Journal of Power Sources, vol. 195, no. 3, pp. 923-928, February 1, 2010.
    [31] Battery University, Comparison table of secondary batteries
    (Retrieval date: August 2019):
    https://batteryuniversity.com/learn/article/secondary_batteries
    [32] Hioki E. E. Corp., Battery HiTESTER 3555
    (Retrieval date: June 2017)
    https://assets.tequipment.net/assets/1/26/Documents/Hioki/3555e_08
    [33] 洪瑋,“串聯電源模組之電池平衡充電,”國立中山大學電機工程學系,碩士論文,民國99年7月。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE