| 研究生: |
張介斌 Chang, Chieh-Ping |
|---|---|
| 論文名稱: |
低雜訊砷化鋁鎵/砷化銦鎵/砷化鎵與磷化銦鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體在直流加速應力下受熱電子影響之研究 The Study of Hot Electron Effects under Accelerated DC Stresses on Low-Noise AlGaAs/InGaAs/GaAs and InGaP/InGaAs/GaAs PHEMTs |
| 指導教授: |
王永和
Wang, Yeong-Her 洪茂峰 Houng, Man-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 假形高速電子移動電晶體 |
| 外文關鍵詞: | Pseudomorphic High Electron Mobility Transistor |
| 相關次數: | 點閱:59 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,我們分別描述了在經過熱電子應力測試前後閘極尺寸0.25µm x 160µm的砷化鋁鎵和磷化銦鎵假形高速電子移動電晶體的直流和雜訊特性,我們發現元件之閘極漏電流和最小雜訊指數皆有改善(變好)之情況,進而發現InGaP PHEMT元件的變化比AlGaAs PHEMT元件小,因此InGaP PHEMT元件有較好之可靠度。
我們也對此兩種元件做了不同條件的熱電子應力測試,從實驗結果發現,利用大的汲極到閘極間電場和適當的通道電流當應力測試條件,可更明顯地觀察到因撞擊游離現象所造成之影響,如閘極漏電流降低、閘極與汲極間之蕭特基接面漏電流降低和最小雜訊指數變好(降低),同時相較於AlGaAs PHEMT元件,InGaP PHEMT元件並無造成更明顯的變化,因此InGaP PHEMT元件的穩定性相當好,並且可靠度較高。
Under accelerated DC stresses, the DC characteristics and noise performance of AlGaAs/InGaAs/GaAs and InGaP/InGaAs/GaAs low noise PHEMTs with the gate dimension 0.25 x 160 µm2 are investigated, It is found that the gate-leakage current and minimum noise figure can be effectively improved. The variations of InGaP PHEMTs are less than AlGaAs PHEMTs. Therefore, the higher reliability is found on InGaP PHEMTs.
Compared with different hot-electron stress conditions, we can find that the high electric field from drain to gate and the suitable channel current can be evidently observed by the effects of impact ionization phenomenon, such as the gate-leakage current decreases and the minimum noise figure improvement. As compared for the AlGaAs PHEMTs, the less variation in the InGaP PHEMTs can be observed for better reliability in low noise application.
1. M. Aust, H. Wang, M. Biedenbender, R. Lai, D. C. Streit, P. H. Liu, G. S. Dow and B. R. Allen, “A 94-GHz Monolithic Balanced Power Aplifier Using 0.1μm Gate GaAs-Based HEMT MMIC Production Process Technology,” IEEE Microwave and Guided Wave Lett.,vol. 5, No. 1, pp. 12-14 , 1995.
2. Y. Itoh, Y. Horrie, K. Nakahara, N. Yoshida, T. Katoh, and T. Takagi, “A V-band, High Gain, Low Noise, Monolithic PHEMT Amplifier Mounted on a Small Hermetically Sealed Package,” IEEE microwave and Guided Wave Lett., vol. 5, No. 2, pp. 48-49, 1995.
3. T. Henderson, M. Aksun, C. Peng, H. Morkoc, P.C. Chao, P.M. Smith, K.H.G. Duh, and L.F. Lester, “Microwave performance of a quarter-micrometer gate low-noise pseudomorphic InGaAs/AlGaAs MODFET,” IEEE Electron Device Lett., vol. EDL-7, pp. 645, 1986.
4. R. Dingle, H. L. Stormer, A. C. Gossard and W. Wiegmann : “Electron mobility in modulation-doped semiconductor heterojunction superlattices,” Appl. Phys., Lett., vol. 33, p.665, 1978
5. M.-Y. Kao, P. M. Smith, P. Ho, P.-C. Chao, K. H. G. Duh, A. A. Jabra, and J. M. Ballingall, “Very High Power-Added Efficiency and Low-Noise 0.15-μm Gate-Length pseudomorphic HEMT’s,” IEEE Electron Device Lett., vol. 10, pp.580-582, 1989.
6. M. Hueschen, N. Moll, E. Gowen, and J. Miller, “Pulse doped MODFETs, in IEEE IEDM Technical Digest,” pp.438, San Franciso, CA, (1984).
7. H. Lee, “Growth of optimization GaAs/(Al,Ga)As modulation-doped heterojunction by MBE for FET’s applications,” Ph.D. Thesis, Cornell University, Ithaca, NY, (1985).
8. T. W. Hickmott, P. M. Solomon, R. Fischer, and H. Morkoc, “Negative charge, barrier heights, and the conduction-band discontinuity in AlxGa1-xAs capacitors, “ J. Appl. Phts., vol. 57, pp. 2844, 1985.
9. S. Subramanian, “Model for the temperature dependence of the threshold voltage of modulation-doped field-effect transistors,” IEEE Trans. Electron Devices, vol. ED-32, pp.865, 1985.
10. H. L. Stormer, R. Dingle, A.C. Gossard, W. Wiegmann, and M. D. Sturge, “Two-dimensional electron gas at a semiconductor- semiconductor interface,” Solid State Comm., vol. 29, pp. 705, 1979.
11. H. Fukui, “Optimal noise figure of microwave GaAs MESFETs,” IEEE Trans. Electron Devices, vol. ED-26, pp. 1032, 1979.
12. A. Thomasian, N. L. Saunders, L. G. Hipwood, A. A. Rezazadeh, “ Mechanism of Kink Effect Related to Negative Photoconductivity in AlGaAs/GaAs HEMT’s,” Electronics Lett., 25th May 1989, vol. 25, No. 11, pp. 738-739.
13. A. Thomasian, A. A. Rezazadeh, L. G. Hipwood, “Observation and mechanism of kink effect in depletion-mode AlGaAs/GaAs and AlGaAs/GaInAs HEMTs,” Electronics Lett., 2nd Mar 1989, vol. 25, No. 5, pp. 351-353.
14. A. Thomasian, A. A. Rezazadeh, J. K. A. Everard, L. G. Hipwood, “Experimental Evidence for Trap-Induced Photoconductive Kink in AlGaAs/GaAs HEMT’s,” Electronics Lett., 5th July 1990, vol. 26, No. 14, pp. 1094-1095.
15. R. Menozzi, P. Cova, C. Canali, and F. Fantini, “Breakdown walkout in Pseudomorphic HEMT’s,” IEEE Trans Electron Devices, vol. 43, no.4, pp. 543-546, 1996.
16. P. C. Chao, M. Shur, M. Y. Kao, and B. R. Lee, “Breakdown walkout in AlGaAs/GaAs HEMT’s,” IEEE Trans. Electron Devices, vol. 39, No. 3, pp. 738-740, 1992.
17. A. Paccagnella, E. Zanoni, C. Tedesco, C. Lanzieri, and A. C.etronio, “Correlation Between Surface-State Density and Impact Ionization Phenomena in GaAs MESFET’s,” IEEE Trans. Electron Devices, vol. 38, No. 12,
pp. 2682-2684, 1993.
18. C. Canali, P. Cova, E. De Bortoli, F. Fantini, G. Meneghesso, R. Menozzi, and E. Zanoni, “Enhancement and degradation of drain current in pseudomorphic AlGaAs/InGaAs HEMT’s induced by hot-electrons,” IEEE Int. Reliability Physics, pp. 205-211, 1995.
19. E. Zanoni, M. Manfredi, S. Bigliardi, A. Paccagnella, P. Pisoni, C. Tedesco, and C. Canali, “ Impact Ionization and light emission in AlGaAs/GaAs HEMTs,” IEEE Trans. Electron Deivces, vol. 39, No. 8, pp. 1849-1857, 1992.
20. K. J. Schoen, J. M. Woodall, J. A. Cooper, and M. R. Melloch, “Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers,” IEEE Trans. Electron Devices, vol. 45, pp. 1595-1604, 1998.
21. D. A. Neamen, “Semiconductor Physics & Devices,” McGraw-Hill, Second Edition, 1997.
22. M. Sze, “ Physics of Semiconductor Devices,” New York: Willy, 1981.
23. R. E. Kasody, G. S. Dow, A. K. Sharma, M. V. Aust, D. Yamauchi, R. Lai, M. Biedenbender, K. L.Tan, and B. R. Allen,” A High Efficiency V-Band Monolithic HEMT Power Amplifier,” IEEE Microwave and Guided Wave LETT., vol, 4, No. 9, pp. 303-304, 1994.
24. G. Meneghesso, C. Canali, P. Cova, E. De Bortoli and E. Zanoni,” Trapped charge modulation: a new cause of instability in AlGaAs/InGaAs pseudomorphic HEMT’s,” IEEE Electron Dev. Lett, vol. 17, pp. 232-234, 1996.
25. M. Borgarino, R. Menozzi, Y. Baeyens, P. Cova, F. Fantini,” Hot electron degradation of the DC and RF characteristics of AlGaAs/InGaAs/GaAs PHEMT’s,” IEEE Trans. Electron Devices, vol. 45, No. 2, pp. 366-372, 1998.
26. C. S. Wang, H. K. Huang, Y. H. Wang,C. L. Wu, C. S. Chang,” High reliability in low noise InGaP gated PHEMTs,” IEEE 2002 GaAs IC Symp., pp. 81-84, 2002.
27. M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long amd D. I. Babie,” Determination of valence and conduction-band discontinuities at the (Ga,In)P/GaAs heterojunction by C-V profiling,” J. Appl. Phys., vol. 61, No. 2, pp. 643-649, 1986.
28. H. Willemsen and D. Nicholson,“ GaAs ICs in commercial OC-192 equipment,” IEEE GaAs IC Symp. Tech. Dig., pp. 262-265, 1996.
29. Y. J. Chan, and D. Pavlidis,” Trap studies in GaInP/GaAs and AlGaAs/GaAs HEMT’s by means of low-frequency noise and transconductance dispersion characterization,” IEEE Trans. Electron Devices, vol. 41, pp. 637-642, 1994.
30. H. K. Huang, Y. H. Wang,C. L. Wu, C. Wang, C. S. Chang,” Super low noise InGaP gated PHEMT,” IEEE Electron
Dev. Lett, vol. 23, pp. 70-72, 2002.
31. S. Fujita, T. Noda, A. Wagai, C. Nozaki and Y. Ashizawa,” Novel HEMT Structures Using a Strained InGaP Schotky Layer,” in Proc. 5th Int. Conf. Indium Phosphide and Related Materials, Paris, France. pp. 497-500, 1993.