簡易檢索 / 詳目顯示

研究生: 劉承揚
Liu, Chen-Yang
論文名稱: 可調式光子晶體光電元件之設計與分析
Design and Analysis of Tunable Photonic Crystal Electro-optical Devices
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 138
中文關鍵詞: 液晶可調式光電元件光子晶體
外文關鍵詞: liquid crystals, tunable photonic crystal devices, photonic crystals
相關次數: 點閱:98下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   光子晶體結構是種由材料折射率或介電常數以週期性排列而組成的結構,此種結構會產生光子能帶,能完全的阻擋光波通過進而控制光波的傳播,因此可以利用此光子晶體結構來設計各種低損失的光波導與光學元件。本文主要以平面波展開法、時域有限差分法和廣義瓊斯矩陣法作為分析的工具,詳細計算所設計的光子晶體光波導與內含液晶材料的光子晶體光波導之各種特性。本文將液晶材料與光子晶體光波導結構互相搭配結合,應用液晶的可調變光電特性與光子晶體結構優良的光波導特性,設計出各種可調式光電元件,包括可調式光子能帶、可調式光子晶體偏振選擇器、可調式光子晶體干涉器、可調式光子晶體耦合器、可調式光子晶體共振器及可調式光子晶體波長分波多工器等,並使用數值模擬的計算來證明各元件的特性與可行性。這些可調式光子晶體光電元件可以應用在未來的積體光學光迴路和光通訊系統中。

     Photonic crystals are artificial dielectric or metallic structures in which the refractive index modulation gives rise to stop bands for optical waves within a certain frequency. The waveguide creates a band of conduction inside the bandgaps. These crystals have many potential applications because of their ability to control lightwave propagation. Such structures can be use to design highly efficient new optical devices. We investigated the properties of the photonic crystal waveguides and the tunable photonic crystal devices with liquid crystals numerically by using the plane wave expansion method, the finite-difference time-domain method, and the extended Jones matrix method. The design and analysis of tunable photonic crystal devices, such as tunable photonic bandgap, tunable photonic crystal field-sensitive polarizer, tunable photonic crystal waveguide Mach-Zehnder interferometer, tunable photonic crystal waveguide coupler, tunable photonic crystal channel drop filter, and tunable wavelength division multiplexing are discussed. The novel tunable components may provide novel application in the photonic integrated circuits and optical communication systems.

    摘要 І 英文摘要 ІІ 誌謝 ІІI 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 基本的光子晶體 3 1-2-2 光子晶體光波導 3 1-2-3 可調式光子晶體 5 1-3 本文架構 7 第二章 液晶物理 9 2-1 液晶簡介 9 2-2 液晶的應用物性 10 2-2-1 液晶的光學異向性 10 2-2-2 相位差與光的偏振狀態 11 2-2-3 液晶的彈性連續體理論 12 2-3 液晶的光電特性 13 2-3-1 電場對液晶分子的影響 13 2-3-2 磁場對液晶分子的影響 13 2-3-3 菲德瑞克斯遷移現象 13 2-4 向列型液晶材料 14 第三章 數值方法 21 3-1 前言 21 3-2 平面波展開法 21 3-2-1 完美光子晶體結構的色散曲線計算法 23 3-2-1-1 正方晶格排列 23 3-2-1-2 三角晶格排列 24 3-2-2 含有缺陷的光子晶體結構的色散曲線計算法 24 3-3 時域有限差分法 25 3-3-1 完美匹配吸收層 27 3-4 廣義瓊斯矩陣法 30 第四章 光子晶體光波導 41 4-1 前言 41 4-2 二維光子晶體的能帶分析 41 4-2-1 正方晶格排列 42 4-2-2 三角晶格排列 42 4-3 二維光子晶體光波導 43 4-3-1 直線型的光子晶體光波導 43 4-3-2 轉彎型的光子晶體光波導 44 4-3-3 分光型的光子晶體光波導 45 4-3-4 干涉型的光子晶體光波導 46 4-3-5 耦合型的光子晶體光波導 48 4-3-6 共振型的光子晶體光波導 51 第五章 可調式光子晶體光電元件 87 5-1 前言 87 5-2 可調式光子能帶 87 5-2-1 可調式光子晶體偏振選擇器 89 5-3 可調式光子晶體干涉器 90 5-4 可調式光子晶體耦合器 91 5-5 可調式光子晶體共振器 92 第六章 結論 117 6-1 綜合結論 117 6-2 未來研究方向與建議 115 參考文獻 121 自述 137

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, Vol.58, pp.2059-2062 (1987).
    [2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, Vol.58, pp.2486-2489 (1987).
    [3] E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Physical Review Letters, Vol.63, pp.1950-1953 (1989).
    [4] T. F. Krauss, R. M. De La Rue, “Photonic crystals in the optical regime – past, present and future,” Progress in Quantum Electronics, Vol.23, pp.51-96 (1999).
    [5] K. M. Ho, C. T. Chan and C. M. Soukoulis, “Existence of photonic gap in periodic dielectric structures,” Physical Review Letters, Vol.65, pp.3152-3155 (1990).
    [6] K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Physical Review Letters, Vol.65, pp.2646-2649 (1990).
    [7] Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Physical Review Letters, Vol.65, pp.2650-2653 (1990).
    [8] E. Yablonovitch, T. J. Gmitter and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Physical Review Letters, Vol.67, pp.2295-2298 (1991).
    [9] M. Plihal, A. Shambrook, A. A. Maradudin and P. Sheng, “Two-dimensional photonic band structures,” Optics Communications, Vol.80, pp.199-204 (1991).
    [10] M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Physical Review B, Vol.44, pp.8565-8571 (1991).
    [11] H. S. Sözüer, J. W. Haus and R. Inguva, “Photonic bands: Convergence problems with the plane-wave method,” Physical Review B, Vol.45, pp.13962-13972 (1992).
    [12] J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Physical Review Letters, Vol.69, pp.2772-2775 (1992).
    [13] R. D. meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Physical Review B, Vol.48, pp.8434-8437 (1993).
    [14] J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic crystals: Molding the flow of light, Princeton University Press, New Jersey (1995).
    [15] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Communications, Vol.89, pp.413-416 (1994).
    [16] T. Sato, Y. Ohtera, N. Ishino, K. Miura and S. Kawakami, “In-plane light propagation in Ta2O5/SiO2 autocloned photonic crystals,” IEEE Journal of Quantum Electronics, Vol.38, pp.904-908 (2002).
    [17] J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Letters, Vol.21, pp.1547-1549 (1996).
    [18] P. R. Villeneuve, S. Fan and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tenability, and coupling efficiency,” Physical Review B, Vol.54, pp.7837-7842 (1996).
    [19] S. Foteinopoulou and C. M. Soukoulis, “Theoretical investigation of one-dimsional cavities in two-dimensional photonic crystals,” IEEE Journal of Quantum Electronics, Vol.38, pp.844-849 (2002).
    [20] S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE Journal of Quantum Electronics, Vol.39, pp.1081-1085 (2003).
    [21] R. Moussa, L. Salomon, F. de Fornel and H. Aourag, “Numerical study on localized defect modes in two-dimensional lattices: A high Q-resonant cavity,” Physica B, Vol.338, pp.97-102 (2003).
    [22] D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen and L. A. Kolodziejski, “One-dimensional photonic bandgap microcavities for strong optical confinement in GaAs and GaAs/AlxOy semiconductor waveguides,” Journal of Lightwave Technology, Vol.17, pp.2152-2160 (1999).
    [23] O. Painter, K. Srinivasan, J. D. O’Brien, A. Scherer and P. D. Dapkus, “Tailoring of the resonant mode properties of optical nanocavities in two-dimensional photonic crystal slab waveguides,” Journal of Optics A: Pure and Applied Optics, Vol.3, pp.S161-S170 (2001).
    [24] K. Inoshita and T. Baba, “Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects,” IEEE Journal of Selected Topics in Quantum Electronics, Vol.9, pp.1347-1354 (2003).
    [25] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Physical Review Letters, Vol.77, pp.3787-3790 (1996).
    [26] K. Sakoda, T. Ueta and K. Ohtaka, “Numerical analysis of eigenmodes localized at line defects in photonic lattices,” Physical Review B, Vol.56, pp.14905-14908 (1997).
    [27] T. Sondergaard and K. H. Dridi, “Energy flow in photonic crystal waveguides,” Physical Review B, Vol.61, pp.15688-15696 (2000).
    [28] A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Physical Review B, Vol.62, pp.4488-4492 (2000).
    [29] M. Qiu, K. Azizi, A. Karlsson, M. Swillo and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Physical Review B, Vol.64, pp.155113 (2001).
    [30] S. Fan, S. G. Johnson, J. D. Joannopoulos, and C. Manolatou and H. A. Haus, “Waveguide branches in photonic crystals,” Journal of the Optical Society of America B, Vol.18, pp.162-165 (2001).
    [31] S. Boscolo, M. Midrio and T. F. Krauss, “Y junctions in photonic crystal channel waveguides: High transmission and impedance matching,” Optics Letters, Vol.27, pp.1001-1003 (2002).
    [32] G. R. Hadley, “Out-of-plane losses of line-defect photonic crystal waveguides,” IEEE Photonics Technology Letters, Vol.14, pp.642-644 (2002).
    [33] T. Uusitupa, K. Kärkkäinen and K. Nikoskinen, “Studying 120º PBG waveguide bend using FDTD,” Microwave and Optical Technology Letters, Vol.39, pp.326-333 (2003).
    [34] P. I. Borel, A. Harpoth, L. H. Frandsen and M. Kristensen, “Topology optimization and fabrication of photonic crystal structures,” Optics Express, Vol.12, pp.1996-2001 (2004).
    [35] M. Koshiba, Y. Tsuji and M. Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” Journal of Lightwave Technology, Vol.18, pp.102-110 (2000).
    [36] M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” Journal of Lightwave Technology, Vol.19, pp.1970-1975 (2001).
    [37] S. Boscolo, M. Midrio and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE Journal of Quantum Electronics, Vol.38, pp.47-53 (2002).
    [38] S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE Journal of Quantum Electronics, Vol.38, pp.1349-1352 (2002).
    [39] M. Qiu and M. Swillo, “Contra-directional coupling between two-dimensional photonic crystal waveguides,” Photonic and Nanostructures – Fundamentals and Applications, Vol.1, pp.23-30 (2003).
    [40] J. Zimmermann, M. Kamp, A. Forchel and R. März, “Photonic crystal waveguide directional couplers as wavelength selective optical filters,” Optics Communications, Vol.230, pp.387-392 (2004).
    [41] I. Park, H.-S. Lee, H.-J. Kim, K.-M. Moon, S.-G. Lee, B.-H. O, S.-G. Park and E.-H. Lee, “Photonic crystal power-splitter based on directional coupling,” Optics Express, Vol.12, pp.3599-3604 (2004).
    [42] A. Martinez, F. Cuesta and J. Marti, “Ultrashort 2-D photonic crystal directional couplers,” IEEE Photonics Technology Letters, Vol.15, pp.694-696 (2003).
    [43] A. Locatelli, D. Modotto, D. Paloschi and C. De Angelis, “All optical switching in ultrashort photonic crystal couplers,” Optics Communications, Vol.237, pp.97-102 (2004).
    [44] J. Danglot, O. Vanbésien and D. Lippens, “A 4-port resonant switch patterned in a photonic crystal,” IEEE Microwave and Guide Wave Letters, Vol.9, pp.274-276 (1999).
    [45] S. Noda, A. Chutinan and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, Vol.407, pp.608-610 (2000).
    [46] S. Y. Lin, E. Chow, S. G. Johnson and J. D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Optics Letters, Vol.26, pp.1903-1905 (2001).
    [47] A. Sharkawy, S. Shi and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystal,” Applied Optics, Vol.40, pp.2247-2252 (2001).
    [48] R. Costa, A. Melloni and M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photonics Technology Letters, Vol.15, pp.401-403 (2003).
    [49] B.-K. Min, J.-E. Kim and H. Y. Park, “Channel drop filters using resonant tunneling processes in two-dimensional triangular lattice photonic crystal slabs,” Optics Communications, Vol.237, pp.56-63 (2004).
    [50] G. P. Nordin, S. Kim, J. Cai and J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Optics Express, Vol.10, pp.1334-1341 (2002).
    [51] J. Jiang, J. Cai, G. P. Nordin and L. Li, “Parallel microgenetic algorithm for photonic crystal and waveguide structures,” Optics Letters, Vol.28, pp.2381-2383 (2003).
    [52] S. Kim, G. P. Bordin, J. Cai and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Optics Letters, Vol.28, pp.2384-2386 (2003).
    [53] S. Kim, J. Cai, J. Jiang and G. P. Nordin, “New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures,” Optics Express, Vol.12, pp.2356-2364 (2004).
    [54] S. Kim, G. P. Nordin, J. Jiang and J. Cai, “High efficiency 90º silica waveguide bend using an air hole photonic crystal region,” IEEE Photonic Technology Letters, Vol.16, pp.1846-1848 (2004).
    [55] S. Kim, G. P. Nordin, J. Jiang and J. Cai, “Microgenetic algorithm design of hybrid conventional waveguide and photonic crystal structures,” Optical Engineering, Vol.43, pp.2143-2149 (2004).
    [56] S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Applied Physics Letters, Vol.78, pp.3015-3017 (2001).
    [57] H. Hillmer, J. Daleiden, C. Prott, F. Römer, S. Irmer, V. Rangelov, A. Tarraf, S. Schüler and M. Strassner, “Potential for micromachined actuation of ultra-wide continuously tunable optoelectronic devices,” Applied Physics B, Vol.75, pp.3-13 (2002).
    [58] H. Takeda and K. Yoshino, “Properties of two-dimensional photonic crystals in elastomers,” Physical Review B, Vol.66, pp.115207 (2002).
    [59] W. Suh, M. F. Yanik, O. Solgaard and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Applied Physics Letters, Vol.82, pp.1999-2001 (2003).
    [60] N. Malkova, S. Kim and V. Gopalan, “Strain tunable light transmission through a 90º bend waveguide in a two-dimensional photonic crystal,” Applied Physics Letters, Vol.83, pp.1509-1511 (2003).
    [61] N. Malkova and V. Gopalan, “Strain-tunable optical valves at T-junction waveguides in photonic crystals,” Physical Review B, Vol.68, pp.245115 (2003).
    [62] Z. Hou, F. Wu and Y. Liu, “Phonoic crystals containing piezoelectric material,” Solid State Communications, Vol.130, pp.745-749 (2004).
    [63] A. D. Lustrac, F. Gadot, S. Cabaret, J.-M. Lourtioz, T. Brillat, A. Priou and E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Applied Physics Letters, Vol.75, pp.1625-1627 (1999).
    [64] J.-M. Lourtioz, A. D. Lustrac, F. Gadot, S. Rowson, A. Chelnokov, T. Brillat, A. Ammouche, J. Danglot, O. Vanbésien and D. Lippens, “Toward controllable pgotonic crystals for centimeter- and millimeter-wave devices,” Journal of Lightwave Technology, Vol.17, pp.2025-2031 (1999).
    [65] P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Physical Review Letters, Vol.85, pp.1875-1878 (2000).
    [66] C.-S. Kee and H. Lim, “Tunable complete photonic band gaps of two-dimensional photonic crystals with intrinsic semiconductor rods,” Physical Review B, Vol.64, pp.121103 (2001).
    [67] Y.-K. Ha, J.-E. Kim, H. Y. Park, C.-S. Kee and H. Lim, “Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities,” Physical Review B, Vol.66, pp.075109 (2002).
    [68] M. S. Kushwaha and G. Martinez, “Magnetic-field-dependent band gaps in two-dimensional photonic crystals,” Physical Review B, Vol.65, pp.153202 (2002).
    [69] A. Sharkawy, S. Shi and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Optics Express, Vol.10, pp.1048-1059 (2002).
    [70] H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals composed of semiconductors depending on temperature,” Optics Communications, Vol.219, pp.177-182 (2003).
    [71] H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors,” Physical Review B, Vol.67, pp.245109 (2003).
    [72] H. Takeda and K. Yoshino, “Properties of Abrikosov lattices as photonic crystals,” Physical Review B, Vol.70, pp.085109 (2004).
    [73] M. Scalora, J. P. Dowling, C. M. Bowden and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap material,” Physical Review Letters, Vol.73, pp.1368-1371 (1994).
    [74] P. Tran, “Optical switching with a nonlinear photonic crystal: a numerical study,” Optics Letters, Vol.21, pp.1138-1140 (1996).
    [75] P. Tran, “All-optical switching with a nonlinear chiral photonic bandgap structure,” Journal of the Optical Society of America B, Vol.16, pp.70-73 (1999).
    [76] H-B. Lin, R. J. Tonucci and A. J. Campillo, “Two-dimensional photonic bandgap optical limiter in the visible,” Optics Letters, Vol.23, pp.94-96 (1998).
    [77] A. Haché and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Applied Physics Letters, Vol.77, pp.4089-4091 (2000).
    [78] S. W. Leonard, H. M. V. Driel, J. Schilling and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Physical Review B, Vol.66, pp.161102 (2002).
    [79] N. C. Panoiu, M. Bahl and R. M. Osgood, “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Optics Express, Vol.12, pp.1605-1610 (2004).
    [80] A. Figotin, Y. A. Godin and I. Vitebsky, “Two-dimensional tunable photonic crystals,” Physical Review B, Vol.57, pp.2841-2848 (1998).
    [81] C.-S. Kee, J.-E. Kim and H. Y. Park, “Heliconic band structure of one-dimensional periodic metallic composites,” Physical Review E, Vol.57, pp.2327-2330 (1998).
    [82] M. Golosovsky, Y. Saado and D. Davidov, “Self-assembly of floating magnetic into ordered structures: A promising route for the fabrication of tunable photonic band gap materials,” Applied Physics Letters, Vol.75, pp.4168-4170 (1999).
    [83] Y. Saado, M. Golosovsky, D. Davidov and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Physical Review B, Vol.66, pp.195108 (2002).
    [84] B. A. Grzybowski, H. A. Stone and G. M. Whitesides, “Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface,” Nature, Vol.405, pp.1033-1036 (2000).
    [85] W. Wen, L. Zhang and P. Sheng, “Planar magnetic colloidal crystals,” Physical Review Letters, Vol.85, pp.5464-5467 (2000).
    [86] B. Gates and Y. Xia, “Photonic crystals that can be addressed with external magnetic field,” Advanced Materials, Vol.13, pp.1605-1608 (2001).
    [87] X. Xu, G. friedman, K. D. Humfeld, S. A. Majetich and S. A. Asher, “Superparamagnetic photonic crystal,” Advanced Materials, Vol.13, pp.1681-1684 (2001).
    [88] E. L. Bizdoaca, M. Spasova, M. Farle, M. Hilgendorff and F. Caruso, “Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell,” Journal of Magnetism and Magnetic Materials, Vol.240, pp.44-46 (2002).
    [89] D. Lacoste, F. Donatini, S. Neveu, J. A. Serughetti and B. A. V. Tiggelen, “Photonic Hall effect in ferrofluids: Theory and experiments,” Physical Review E, Vol.62, pp.3934-3943 (2000).
    [90] J. Zhou, C. Q. Sun, K. Pita, Y. L. Lam, Y. Zhou, S. L. Ng, C. H. Kam, L. T. Li and Z. L. Gui, “Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3,” Applied Physics Letters, Vol.78, pp.661-663 (2001).
    [91] S. Y. Yang, H. E. Horng, C.-Y. Hong, H. C. Yang, M. C. Chou, C. T. Pan and Y. H. Chao, “Control method for the tunable ordered structures in magnetic fluid microstrips,” Journal of Applied Physics, Vol.93, pp.3457-3460 (2003).
    [92] K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Physical Review Letters, Vol.83, pp.967-970 (1999).
    [93] S. W. Leonard, J. P. Mondia, H. M. V. Driel, O. Toader, S. John, K. Busch, A. Birner and U. Gösele, “Tunable two-dimensional photonic crystals using liquid crystal infiltration,” Physical Review B, Vol.61, pp.R2389-R2391 (2000).
    [94] N. Susa, “Transmittance for a two-dimensional photonic crystal structure consisting of cylinders and liquid crystal,” Japan Journal of Applied Physics, Vol.39, pp.3466-3467 (2000).
    [95] D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov and R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: Effect of liquid-crystal alignment,” Physical Review Letters, Vol.86, pp.4052-4055 (2001).
    [96] Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Applied Physics Letters, Vol.79, pp.15-17 (2001).
    [97] C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim and H. Y. Park, “Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals,” Physical Review B, Vol.64, pp.085114 (2001).
    [98] C.-S. Kee, K. Kim and H. Lim, “Tuning of anisotropic optical properties of two-dimensional dielectric photonic crystals,” Physica B, Vol.338, pp.153-158 (2003).
    [99] Y. Shimoda, M. Ozaki and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Applied Physics Letters, Vol.79, pp.3627-3629 (2001).
    [100] H. Takeda and K. Yoshino, “Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals,” Journal of Applied Physics, Vol.92, pp.5658-5662 (2002).
    [101] H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystal utilizing liquid crystals as linear defects,” Physical Review B, Vol.67, pp.073106 (2003).
    [102] H. Takeda and K. Yoshino, “Tunable refraction effects in two-dimensional photonic crystals utilizing liquid crystals,” Physical Review E, Vol.67, pp.056607 (2003).
    [103] H. Takeda and K. Yoshino, “Disappearances of uncoupled modes in two-dimensional photonic crystals due to anisotropies of liquid crystals,” Physical Review E, Vol.67, pp.056612 (2003).
    [104] H. Takeda and K. Yoshino, “Coupling of the TE and TM modes of electromagnetic waves in two-dimensional photonic crystals with surface defects of liquid crystals,” Physical Review E, Vol.68, pp.046602 (2003).
    [105] H. Takeda and K. Yoshino, “TE-TM mode coupling in two-dimensional photonic crystals composed of liquid crystal rods,” Physical Review E, Vol.70, pp.026601 (2004).
    [106] D. M. Pustai, A. Sharkawy, S. Shi and D. W. Prather, “Tunable photonic crystal microcavities,” Applied Optics, Vol.41, pp.5574-5579 (2002).
    [107] A. D’Orazio, M. D. Sario, V. Ingravallo, V. Petruzzelli and F. Prudenzano, “Infiltrated liquid crystal photonic bandgap devices for switching and tunable filtering,” Fiber and Integrated Optics, Vol.22, pp.161-172 (2003).
    [108] H. Kitzerow, “Tunable photonic crystals,” Liquid crystals Today, Vol.11, pp.3-7 (2002).
    [109] Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Applied Physics Letters, Vol.82, pp.2767-2769 (2003).
    [110] T. T. Larsen, J. Broeng, D. S. Hermann and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electronics Letters, Vol.39, pp.1719-1720 (2003).
    [111] P. J. Collings and M. Hird, Introduction to liquid crystals chemistry and physics, Taylor & Francis, UK (1997).
    [112] E. Hecht, Optics, Addison Wesley, California (2002).
    [113] A. Yariv and P. Yeh, Optical waves in crystals, John Wiley & Sons, New Jersey (2003).
    [114] I.-C. Khoo and S.-T. Wu, Optics and nonlinear optics of liquid crystals, World Scientific, Singapore (1993).
    [115] I.-C. Khoo, Liquid crystals: physical properties and nonlinear optical phenomena, John Wiley & Sons, New York (1995).
    [116] C. Hu, J. R. Whinnery and N. M. Amer, “Optical deflection in thin-film nematic-liquid-crystal waveguides,” IEEE Journal of Quantum Electronics, Vol.10, pp.218-222 (1974).
    [117] C. Hu and J. R. Whinnery, “Field-realigned nematic-liquid-crystal optical waveguides,” IEEE Journal of Quantum Electronics, Vol.10, pp.556-562 (1974).
    [118] J. R. Whinnery, C. Hu and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE Journal of Quantum Electronics, Vol.13, pp.262-267 (1977).
    [119] S.-T. Wu, U. Efron and L. D. Hess, “Infrared birefringence of liquid crystals,” Applied Physics Letters, Vol.44, pp.1033-1035 (1984).
    [120] S.-T. Wu, “Birefringence dispersions of liquid crystals,” Physical Review A, Vol.33, pp.1270-1274 (1986).
    [121] T. Nose, S. Sato, K. Mizuno, J. Bae and T. Nozokido, “Refractive index of nematic liquid crystals in the submillimeter wave region,” Applied Optics, Vol.36, pp.6383-6387 (1997).
    [122] V. Reshetnyak and O. Shevchuk, “Operating voltage in the inplane-switching of nematic liquid crystals,” Journal of Molecular Liquids, Vol.92, pp.131-137 (2001).
    [123] S. Bartkiewicz, K. Matczyszyn, A. Miniewicz and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Optics Communications, Vol.187, pp.257-261 (2001).
    [124] A. V. Zakharov and R. Y. Dong, “Dielectric and elastic properties of liquid crystals,” Physical Review E, Vol.64, pp.031707 (2001).
    [125] N. Mizoshita, Y. Suzuki, K. Kishimoto, K. Hanabusa and T. Kato, “Electrooptical properties of liquid-crystalline physical gels: A new oligo (amino acid) gelator for light scattering display materials,” Journal of Materials Chemistry, Vol.12, pp.2197-2201 (2002).
    [126] A. Z. Zakharov and L. V. Mirantsev, “Dynamic and dielectric properties of liquid crystals,” Physics of the Solid State, Vol.45, pp.183-188 (2003).
    [127] J. Yonekura, M. Ikeda and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” Journal of Lightwave Technology, Vol.17, pp.1500-1508 (1999).
    [128] F. Brechet, J. Marcou, D. Pagnoux and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Optical Fiber Technology, Vol.6, pp.181-191 (2000).
    [129] S. Guenneau, A. Nicolet, F. Zolla and S. Lasquellec, “Modeling of photonic crystal optical fibers with finite elements,” IEEE Transactions on Magetics, Vol.38, pp.1261-1264 (2002).
    [130] V. F. Rodríguez-Esquerre, M. Koshiba and H. E. Hernández-Figueroa, “Finite-element time-domain analysis of 2-D photonic crystal resonant cavities,” IEEE Photonics Technology Letters, Vol.16, pp.816-818 (2004).
    [131] S.-T. Chu and S. K. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided-wave optical structures,” Journal of Lightwave Technology, Vol.7, pp.2033-2038 (1989).
    [132] C. T. Chan, Q. L. Yu and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Physical Review B, Vol.51, pp.16635-16642 (1995).
    [133] L. Shen, S. He and S. Xiao, “A finite-difference eigenvalue algorithm for calculating the band structure of a photonic crystal,” Computer Physics Communications, Vol.143, pp.213-221 (2002).
    [134] L. Wu and S. He, “Revised finite-difference time-domain algorithm in a nonorthogonal coordinate system and its application to the computation of the band structure of a photonic crystal,” Journal of Applied Physics, Vol.91, pp.6499-6506 (2002).
    [135] S. Yamada, Y. Watanable, Y. Katayama and J. B. Cole, “Simulation of optical pulse propagation in a two-dimensional photonic crystal waveguide using a high accuracy finite-difference time-domain algorithm,” Journal of Applied Physics, Vol.93, pp.1859-1864 (2003).
    [136] E. E. Kriezis and S. J. Elston, “Finite-difference time domain method for light wave propagation within liquid crystal devices,” Optics Communication, Vol.165, pp.99-105 (1999).
    [137] S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equation in a planewave basis,” Optics Express, Vol.8, pp.173-190 (2000).
    [138] S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Optics Express, Vol.11, pp.167-175 (2003).
    [139] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, Vol.14, pp.302-307 (1966).
    [140] A. Taflove and S. C. Hagness, Computational electrodynamics: The finite-difference time-domain method, Artech House, Boston (2000).
    [141] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, Vol.114, pp.185-200 (1994).
    [142] Z. S. Sacks, D. M. Kingsland, R. lee and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Transactions on Antennas and Propagation, Vol.43, pp.1460-1463 (1995).
    [143] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Transactions on Antennas and Propagation, Vol.44, pp.1630-1639 (1996).
    [144] P. Yeh, “Extended Jones matrix method,” Journal of the Optical Society of America, Vol.72, pp.507-513 (1982).
    [145] C. Gu and P. Yeh, “Extended Jones matrix method II,” Journal of the Optical Society of America A, Vol.10, pp.966-973 (1993).
    [146] A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Applied Physics Letters, Vol.57, pp.2767-2769 (1990).
    [147] A. Lien, “A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays,” Liquid Crystals, Vol.22, pp.171-175 (1997).
    [148] F. H. Yu and H. S. Kwok, “Comparison of extended Jones matrices for twisted nematic liquid-crystal display at oblique angles of incidence,” Journal of the Optical Society of America A, Vol.16, pp.2772-2780 (1999).
    [149] R. März, Integrated optics, Artech House, Boston (1995).
    [150] M. Dagenais, R. F. Leheny and J. Crow, Integrated optoelectronics, Academic Press, San Diego (1995).
    [151] M. Bayindir, B. Temelkuran and E. Ozbay, “Photonic-crystal-based beam splitters,” Applied Physics Letters, Vol.77, pp.3902-3904 (2000).
    [152] M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Physical Review B, Vol.63, pp.081107 (2001).
    [153] S. Y. Lin, E. Chow, J. Bur, S. G. Johnson and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at ~1.6-μm wavelengths built with a two-dimensional photonic crystal,” Optics Letters, Vol.27, pp.1400-1402 (2002).
    [154] S. Khalfallah, P. Dubreuil, R. Legros, C. Fontaine, A. Munoz-Yagüe, B. Beche, H. Porte, R. Warno and M. Karpierz, “Highly unbalanced GaAlAs-GaAs integrated Mach-Zehnder interferometer for coherence modulation at 1.3 μm,” Optics Communications, Vol.167, pp.67-76 (1999).
    [155] Q. Wang and S. He, “Optimal design of a flat-top interleaver based on cascaded M-Z interferometers by using a genetic algorithm,” Optics Communications, Vol.224, pp.229-236 (2003).
    [156] S.-L. Tsao and S.-G. Lee, “Design and analysis of a new silicon-on-insulator waveguide Michelson interferometer senor,” Optical and Quantum Electronics, Vol.36, pp.309-320 (2004).
    [157] Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” Journal of Applied Physics, Vol.91, pp. 922-929 (2002).
    [158] S. Lan, K. Kanamoto, T. Yang, S. Nishhikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa and H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Physical review B, Vol.67, pp.115208 (2003).
    [159] M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus and W. K. Marshall, “Two-dimenesional photonic crystal Mach-Zehnder interometers,” Applied Physics Letters, Vol.84, pp.460-462 (2004).
    [160] Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida and Y. Watanabe, “Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,” Applied Physics Letters, Vol.83, pp.3236-3238 (2003).
    [161] S. O. Kasap, Optoelectronics and photonics: Principles and practices, Prentice Hall, New Jersey (2001).
    [162] E. Rosencher and B. Vinter, Optoelectronics, Cambridge University Press, Cambridge (2002).
    [163] E. Centeno, B. Guizal and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” Journal of Optics A: Pure and Applied Optics, Vol.1, pp.L10-L13 (1999).
    [164] M. Imada, S. Noda, A. Chutinan, M. Mochizuki and T. Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” Journal of Lightwave Technology, Vol.20, pp.845-850 (2002).
    [165] S. Fasquel, X. Mélique, O. Vanbésien and D. Lippens, “Wave channeling in compact multiport waveguides patterned in electromagnetic crystals,” Superlattices and Microstructures, Vol.32, pp.145-151(2002).
    [166] A. Martinez, J. Martí, J. Bravo-Abad and J. Sánchez-Dehesa, “Wavelength demultiplexing structure based on coupled-cavity waveguides in photonic crystals,” Fiber and Integrated Optics, Vol.22, pp.151-160, (2003).
    [167] Z.-Y. Li, J. Wang and B.-Y Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Physical Review B, Vol.58, pp.3721-3729 (1998).
    [168] Z.-Y. Li, B.-Y. Gu and G.-Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Physical Review Letters, Vol.81, pp.2574-2577 (1998).
    [169] Z.-Y. Li, B.-Y. Gu and G.-Z. Yang, “Improvement of absolute band gaps in 2D photonic crystals by anisotropy in dielectricity,” The European Physical Journal B, Vol.11, pp.65-73 (1999).
    [170] M. S. Kushwaha and B. Diafari-Rouhani, “Band-gap engineering in two-dimensional periodic photonic crystals,” Journal of Applied Physics, Vol.88, pp.2877-2884 (2000).
    [171] H. Takeda and K. Yoshino, “Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect,” Physical Review E, Vol.69, pp.016605 (2004).
    [172] D. Jiménez, E. Bartolomé, M. Moreno, J. Muňoz and C. Domínguez, “An integrated silicon ARROW Mach-Zehnder interferometer for sensing applications,” Optics Communications, Vol.132, pp.437-441 (1996).
    [173] R. A. J. Soden and R. J. Dewhurst, “An integrated liquid crystal phase modulator for speckle shearing interferometry,” Optics and Lasers in Engineering, Vol.31, pp.123-134 (1999).
    [174] H.-M. Keller, S. Pereira and J. E. Sipe, “Grating enhanced all-optical switching in a Mach-Zehnder interferometer,” Optics Communications, Vol.170, pp.35-40 (1999).
    [175] M. W. McCall and A. Lakhtakia, “Integrated optical polarization filtration via sculptured-thin-film technology,” Journal of Modern Optics, Vol.48, pp.2179-2184 (2001).
    [176] K.-C. Lin, W.-C. Chuang and W.-Y. Lee, “Proposal and analysis of an ultrashort directional coupler polarization splitter with an NLC coupling layer,” Journal of Lightwave Technology, Vol.14, pp.2547-2553 (1996).
    [177] L. Sirleto, G. Coppola and G. Breglio, “Optical multimode interference router based on a liquid crystal waveguide,” Journal of Optics A: Pure and Applied Optics, Vol.5, pp.S298-S304 (2003).
    [178] S. Lan, S. Nishikawa, H. Ishikawa and O. Wada, “Engineering photonic crystal impurity bands for waveguides, all-optical switches and optical delay lines,” IEICE Transactions on Electronics, Vol.E85, pp.181-189 (2002).
    [179] H.-Y. Ryu, H.-G. Park and Y.-H. Lee, “Two-dimensional photonic crystal semiconductor lasers: Computational design, fabrication, and characterization,” IEEE Journal of Selected Topics in Quantum Electronics, Vol.8, pp.891-908 (2002).
    [180] M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand and A. Forchel, “Semiconductor photonic crystals for optoelectronics,” Physica E, Vol.21, pp.802-808 (2004).
    [181] J. Topol’ančik, S. Pradhan, P-C. Yu, S. Ghosh and P. Bhattacharya, “Electrically injected photonic crystal edge-emitting quantum-dot light source,” IEEE Photonics Technology Letters, Vol.16, pp.960-962 (2004).
    [182] M. Lončar, T. Doll, J. Vučković and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” Journal of Lightwave Technology, Vol.18, pp.1402-1411 (2000).
    [183] A. Chelnokov, S. David, K. Wang, F. Marty and J.-M. Lourtioz, “Fabrication od 2-D and 3-D silicon photonic crystals by deep etching,” IEEE Journal of Selected Topics in Quantum Electronics, Vol.8, pp.919-927 (2002).
    [184] T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE Journal of Quantum Electronics, Vol.38, pp.743-752 (2002).
    [185] W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman and R. Baets, “Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography,” IEEE Journal of Selected Topics in Quantum Electronics, Vol.8, pp.928-934 (2002).

    下載圖示 校內:2006-06-30公開
    校外:2006-06-30公開
    QR CODE