| 研究生: |
林文楨 Lin, Wen-Chen |
|---|---|
| 論文名稱: |
不同成長時間對成長奈米碳管之影響與利用再活化的催化劑成長奈米碳管 Growth Kinetics of Carbon Nanotubes and The Re-Activation of Catalyst |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 催化劑再活化 、階段性碳管 、奈米碳管 、成長時間 |
| 外文關鍵詞: | Growth Time, Carbon Nanotubes, Step-Growth CNTs, Re-Activation of Catalyst |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在前人的研究中指出,鋁-鐵-矽薄膜催化劑可以有效的在低溫下(370 ℃)以高成長速率合成準直性的奈米碳管。因為於催化劑薄膜下沉積一層鋁金屬薄膜可以有效的提供更具活性的成核位置,以助於奈米碳管的合成。因此本研究選用鐵-矽和鋁-鐵-矽薄膜催化劑來研究其不同的成長時間對奈米碳管之影響且利用再活化催化劑的處理生成階段性碳管。
本研究主要採用前人最佳的Fe-Si薄膜參數,在固定厚度的Fe-Si薄膜催化劑下,沈積一層約0、2、4、8和10 nm的鋁層。實驗所使用的Al基層是以直流濺鍍法製備,而Fe-Si薄膜催化劑是由共濺鍍法(Co-sputtering)製備,並採用微波電漿輔助化學氣相沉積法(MPCVD)於低溫下成長奈米碳管且變化其成長的時間,另外改變其製程使催化劑得以再活化並獲得階段性碳管,碳管成長時所使用的反應氣體均為甲烷(碳源)及氫氣(載氣)的混合氣體。
在以MPCVD成長碳管過程之中,先以氫氣電漿前處理使催化劑薄膜達到適合成長碳管的條件,再通入碳源並改變不同時間以提供奈米碳管的成長。發現使用Fe-Si薄膜催化劑,不論是否經過氫氣電漿前處理,其成長碳管的速度均低於使用Al/Fe-Si薄膜催化劑所生成碳管的成長速率。利用Fe-Si作為催化劑時其碳管最佳成長速率為2 μm/min;但若以Al/Fe-Si作為催化劑時其碳管最佳成長速率可達6 μm/min。
經由不同成長時間可以探討碳管的成長歷程。在成長初期為一孕核期並無碳管生成,取而代之的是催化劑的碳化,且經由鋁層的添加可以使原催化劑層膨脹並趨向於棉花狀結構有助於碳源在內部擴散,故可有效的下降孕核期的時間。成長時間上升可使碳管長度增加,但至某成長時間後其碳管的長度下降,推估為催化劑已毒化,內部氫氣蝕刻造成碳管長度下降。
本研究利用已毒化的催化劑接觸空氣後使催化劑再活化獲得階段性奈米碳管,分段式成長製程可分為兩段式、三段式和五段式成長製程,發現兩段式成長製程時碳管可達最快成長速度約21 μm/min,遠遠超過單段式成長速度,推估的原因可能為催化劑經過vent gas過程後,催化劑的氧化造成成長速度大幅上升的結果。且經過處理後碳管有不同製程下碳管與碳管間的連接點,可證明碳管遵循連續成長且由底部開始成長。並選用純鎳和純鐵觀察是否有階段性碳管的生成,且探討空氣中何種氣體導致催化劑再活化,最後探究碳管的場發特性。
本研究中利用掃描式電子顯微鏡(SEM)觀察成長後碳管之形貌,穿透式電子顯微鏡(TEM)觀察階段性碳管接點和碳管結構,而拉曼(Raman)光譜加以觀察與分析碳管結構,最後以場發射量測(FED)設備量測連續式製程成長後碳管與階段式製程成長後碳管之場發特性。
According to the previous report, we have achieved very fast growth rate of aligned carbon nanotubes (CNTs) at low temperature (370 ℃) using Al/Fe-Si thin film catalyst. Because of the introduction of an Al metal underlayer under the active catalyst layers appears to provide more active nucleation sites and its helpful for the synthesis of CNTs. Therefore we used Fe-Si and Al/Fe-Si thin film catalyst which had different thickness for growing CNTs with different growth time and different kind of experimental methods. We focused on the effect of different growth time prior to CNTs and the step-growth CNTs on re-activated catalyst.
The Fe-Si thin film catalyst which fixed the thickness was prepared using dc magnetron co-sputter deposition and the Al underlayer which varied from 0 to 10 nm was deposited on the substrate using dc magnetron sputter deposition. Catalyst deposited substrates were then subjected to a MPCVD reactor for the growth of CNTs. We varied the growth time during the MPCVD process and changed the experimental method which made the catalyst re-activated for growing step-growth CNTs. The reaction gas used was methane along with hydrogen.
In the process of CNT growth, the plasma pretreatment was necessary to make the thin film catalyst more active and could use to growth CNTs. It was found that the growth rate of CNTs which using Fe-Si thin film catalyst with or without plasma etching is lower than the CNTs which using Al/Fe-Si thin film catalyst. The maximum growth rate of CNTs which using Fe-Si thin film catalyst is 2 μm/min. And The maximum growth rate of CNTs which using Al/Fe-Si thin film catalyst is 6 μm/min.
Due to different growth time, we could discuss with the CNTs growth kinetics. In the beginning of CNTs growth, it’s believe that there has a incubation time which had no CNTs growth up but the carburization of the catalyst is believed to take place. And the incubation time decreases with the thickness of the Al underlayer and the growth was also enhanced as a result of Al addition. This is attributed to the swelling of the etched catalyst, i.e., making the catalyst porous. Porous structure make carbon source diffuse more easily. After incubation time, the CNTs length increase due to growth time increase. And the maximum CNTs length is always fixed at a growth time, after this growth time, the CNTs length would get down due to the etched atmosphere inside the chamber. It’s believed that the catalyst is poisoned.
In our research, we show an unprecedented re-growth of CNTs and step-growth CNTs due to the re-activation of catalyst which using vent gas process. The step-growth process could consist of two-steps, three-steps and five-steps procedure. Due to two-steps growth, the CNTs growth rate was reached to 21 μm/min due to the vent gas process. Amorphous Fe3O4 was formed during vent gas process, and found to enhance the growth rate of CNTs. Due to step-growth process, there has a interface line between different kind of experimental procedure. Owing to the interface line, it suggested that the growth of CNTs is continuous and growth from the base catalyst. This and the mechanism of such unprecedented growth are not clearly at the present time. It may be attributed to the re-oxidation of the catalyst due to the exposure to the air and the structural lessening or micro-cracking due to the sudden temperature drop from the growth temperature to the ambient temperature. Pure Fe and pure Ni catalyst was used in step-growth process. And also, we try to find out what kind of gas made the catalyst re-activated and the FED properties of CNTs.
CNTs length and morphologic were analyzed using Hitachi S4100 and Philips XL-40FEG scanning electron microscopes (SEM). The interface line of CNTs and CNTs structure were analyzed using FEI Tecnai F20 G2 high transmission electron microscopes (HR-TEM) equipped with a field emission gun (FEG). Micro Raman spectrometer from Renishaw with He-Ne laser source with a wavelength of 633 nm was used to determine the quality of CNTs. Field emission properties was determined by FED equipment at the laboratory of micro-electric.
1.Iijima S., Helical microtubules of graphitic carbon. Nature 354 (1991) 56.
2.Giannis Mpourmpakis, George E. Froudakis, Haeckelites: A promising anode material for lithium batteries application.An ab initio and molecular dynamics theoretical study. Appl. Phys. Lett. 89 (2006) 233125.
3.Ray H. Baughman, Anvar A. Zakhidov, Walt A. de Heer, Carbon Nanotubes-the Route Toward Applications. Science 297 (2002) 787.
4.Dresselhaus M. S., Eklund P. C., Phonons in carbon nanotubes Advances in Physics 49 (2000) 705.
5.Tasaki S., Maekawa K., Yamabe T., π-band contribution to the optical properties of carbon nanotubes: Effects of chirality. Physical Review B 57(1998) 9301
6.Kuzumaki T, Mitsuda Y, Dynamic measurement of electrical conductivity of carbon nanotubes during mechanical deformation by nanoprobe manipulation in transmission electron microscopy. Appl. Phys. Lett. 85 (2004) 1250.
7.Issi J.P., Langer L., Heremans J., Olk C.H., Electronic Properties of Carbon Nanotubes: Experimental Results. Carbon 33 (1995) 941.
8.L. Kwo, M. Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, Characteristics of flat panel display using carbon nanotubes as electron emitters. Diamond and Rel. Mater. 9 (2000) 1270.
9.C. Emmeneggera, J. M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Zu¨ttel, L. Schlapbach, Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism. Carbon 41 (2003) 539-547.
10.Alan M. Cassell, Jeffrey A. Raymakers, Jing Kong, Hongjie Dai, Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes. J. Phys. Chem. B. 103 (1999) 6484.
11.Chen P., Zhang H.B., Lin G.D., Hong Q., Tsai K.R., Growth of Carbon Nanotubes By Catalytic Decomposition of CH4 or CO on a Ni-MgO Catalyst. Carbon. 35 (1997) 1495.
12.Jonrent C, Maser WK, Bernier P, A. Loiseau, M. Lamyde la Chapelle,S. Lefrant,P. Deniard,R. Leek, J. E. Fischerk, Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature. 388 (1997) 756.
13.Thess A., Lee R., Nikolaev P., Dai H, Petit P., Robert J., Xu C., Lee Y.H., Kim S.G., Rinzler A.G., Colbert D.T.., Scuseria G.E., Tomanek D., Fischer J.E., Smalley R.E., Crystalline ropes of metallic carbon nanotubes. Science 273 (1996) 483.
14.Hou Peng Xiang, Shuo Bai, Chang Liu, Hui Ming Cheng, Observations of novel carbon nanotubes with multiple hollow cores. Carbon 41 (2003) n13 2477-2480.
15.Jyh Ming Ting, Shih Wei Hung, Deposition and characteristics of iron–silicon thin film catalyst for CNT growth. Diamond Relat. Mater.15 (2006) 1834.
16.Kun Hou Liao, Jyh Ming Ting, Characteristics of aligned carbon nanotubes synthesized using a high-rate low-temperature process. Diamond Relat. Mater.15 (2006) 1210.
17.Jyh Ming Ting, Kun Hou Liao, Low-temperature, nonlinear rapid growth of aligned carbon nanotubes. Chem. Phys. Lett. 396 (2004) 469.
18.T. de los Arcos, F. Vonau, M.G. Garnier, V. Thommen, P. Oelhafen, M. Düggelin, D. Mathis, R. Guggenheim, Influence of iron–silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition. Appl. Phys. Lett. 80 (2002) 2383.
19.L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth. Chem. Phys. Lett. 348 (2001) 368.
20.L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B.Chen, J. Han, M. Meyyappan, Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys. 91 (2002) 6027.
21.F. Y. Teng, Jyh Ming Ting, Sahendra P. Sharma, Kun Hou Liao, Growth of CNTs on Fe–Si catalyst prepared on Si and Al coated Si substrates. Nanotechnology 19 (2008) 095607 (6pp).
22.Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science 282 (1998) 1105.
23.S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai, Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science 283 (1999) 512.
24.K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science 306 (2004) 1362.
25.B. Q. Wei, R. Vajtai, Y, Jung, J. Ward, R. Zhang, G. Ramanath, P. M. Ajayan, Organized assembly of carbon nanotubes. Nature 416 (2002) 495.
26.Xuesong Li, Anyuan Cao, Yung Joon Jung, Robert Vajtai, and Pulickel M. Ajayan, Bottom-Up Growth of Carbon Nanotube Multilayers: Unprecedented Growth. Nano Letters 5 (2005) n10 1997.
27.Prakash R. Somani, M. Umeno, Importance of Transmission Electron Microscopy for Carbon Nanomaterials Research. Modern Research and Educational Topics in Microscopy (2007) 634-642
28.H.W. Kroto, J.R. Heath, S.C.O. Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318 (1985) 162.
29.M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes. Carbon 33 (1995) 883.
30.R.T.K. Baker, P.S Harries, The formation of filamentous carbon. Chemistry and Physics of Carbon ,Marcel Dekker, New York 14 (1978) 84-165.
31.Zhou, R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez, S.H. Glarum, Defects in carbon nanostructures. Science 263 (1994) 1744.
32.S. Amelinckx, D. Bernaerts, X.B. Zhang, G.V. Tendeloo, J.V. Landuyt, A Structure Model and Growth Mechanism for Multishell Carbon Nanotubes. Science 267 (1995) 1334.
33.B.I. Yakobson, in Fullerences-Recent Advances in the Chemistry abd Physics of Fullerences and Related Materials, R.S. Ruoffand, K.M. Kadish, Eds. (Electrochemical Society, Pennington, NJ, 1997) vol. 5 (94-42), pp. 549-560.
34.B.I. Yaobson, M.P. Campbell, C.J. Brabec, .J. Bernholc, High Strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8 (1997) 341.
35.B.T. Kelly, Physics of Graphite (Applied Science, London, 1981) 53.
36.B.I. Yakobson, Mechanical relaxation and ‘‘intramolecular plasticity’’ in carbon nanotubes. Appl. Phys. Lett. 72 (1998) 918.
37.P. Zhang, P.E. Lammert, V.H. Crespi, Plastic Deformations of Carbon Nanotubes. Phys. Rev. Lett. 81 (1998) 5346.
38.M.B. Nardelli, B.I. Yakobson, J. Berhholc, Mechanism of strain release in carbon nanotubes. Phys. Rev. B, 57 (1998) R4277.
39.M.B. Nardelli, B.I. Yakobson, J. Berhholc, Brittle and Ductile Behavior in Carbon Nanotubes. Phys. Rev. Lett. 81 (1998) 4656.
40.P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. Science, 283 (1999) 1513.
41.J. Cumings, A. Zettl, Low-Friction NanoscaLe Linear Bearing ReaLized from MuLtiwaLL Carbon Nanotubes. Science, 289 (2000) 602.
42.M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerence and Carbon Nanotubes, Academic Press, San Diego, (1996) 180.
43.N. Hamada, S Sawada, A. Oshiyama, New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 68 (1992) 1579.
44.H. Dai, E.W. Wong, C.M. Lieber, Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science 272 (1996) 523.
45.T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes. Nature 382 (1996) 54.
46.W. Primak, L.H.Fuchs, Electrical conductivities of natural graphite crystals. Phys. Rev. 95 (1954) 22.
47.W. A. de Heer, A. Chatelain, and D. Ugarte, A Carbon Nanotube Field-Emission Electron Source. Science, 270 (1995), 1179.
48.O. Gröning, O. M.Küttel, Ch. Emmenegger, P. Gröning, and L. Schlapbach, Field emission properties of carbon nanotubes. J. Vac.Sci. Technol. B, 28 (2000), 665.
49.M. Chhowalla, C. Ducati, N. L. Rupesinghe, K. B. K. Teo, G. A. J. Amaratunga, Field emission from short and stubby vertically aligned carbon nanotubes. Applied Physics Lettrs, 79 (2001) 2079.
50.A.M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, In situ-grown carbon nanotube array with excellent field emission characteristics. Applied Physics Letters, 76 (2000) 3813.
51.J. M. King, W. B. Choi, N. S. Lee, and J. E. Jung, Field emission from carbon nanotubes for displays. Diamond and Related Materials, 9 (2000) 1184.
52.H, Murakami, M, Hir akawa, C. Tanaka, and H. Yamakawa, Field emission from well-aligned, patterned, carbon nanotube emitters. Applied Physics Letters, 76 (2000) 1776.
53.W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y. W. Jin, I.T. Han,Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, and J.M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display. Applied Physics Letters, 75 (1999) 3129.
54.A. van Oostrom, Field Emission Cathodes. J. Appl. Phys., 33(1962), 2917.
55.Q. Liang, Q. Li, D.L. Chen, D.R. Zhou, B.L. Zhang, Z.L. Yu, Chemical Journal of Chinese Universities-Chinese 21 (2000) 623.
56.R.T.K. Baker, M.A. Braber, P.S. Harries, F.S. Feates, R.J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catalysis 26 (1972) 51.
57.A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32 (1976) 335.
58.M. Endo, H.W. Kroto, Formation of Carbon Nanofibers. J. Phys. Chem. 96 (1992) 6941.
59.Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi, A new relativistic scheme in Dirac–Kohn–Sham theory. Chem. Phys. Lett. 204 (1993) 277.
60.A. Oberlin, M. Endo, T. Koyama, High resolution microscope observations of graphitized carbon fibers. Carbon 14 (1976) 133.
61.R. T. K. Baker, J.J. Chludzinski, Filamentous carbon growth on nickel-iron surfaces: The effect of various oxide additives. J. Catalysis 64 (1980) 464.
62.T. Baird, J.R. Fryer, B. Giant, Carbon formation on iron and nickel foils by hydrocarbon pyrolysis. Reactions at 700.deg. Carbon 12 (1974) 591.
63.Y.J. Yoon, H.K.Baik, Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition. Diamond and Related Materials 10 (2001) 1214.
64.T. W. Ebbeseen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358 (1992) 220.
65.D.S. Bethune, C.H. Kiang, De Vires, Nature 363 (1993) 605.D.S. Bethune, C.H. Kiang, De Vires, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363 (1993) 605.
66.T.W. Ebbeseen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, K. Tanigaki, Chem. Phys. Lett. 209 (1993) 83.
67.S. Seraphin, D. Zhou, J. Jiao, C. Withers, R. Loufty, Effect of processing conditions on the morphology and yield of carbon nanotubes. Carbon 31 (1993) 685.
68.P. Bernier, W. Maser, C. Journet, A. Loiseau, M. L. de la Chapelle, S. Lefrant, R. Lee, J. E. Fischer, Carbon single wall nanotubes elaboration and properties. Carbon, 36 (1998) 675.
69.S. Subramoney, R. S. Ruoff, D. C. Lorents, and R. Malhotra, Radial single-layer nanotubes. Nature 366 (1993) 637.
70.S. Zhou, S. Seraphin, and S. Wang, Single-walled carbon nanotubes growing radially from YC2 particles. Applied Physics Letters, 65 (1994) 1593.
71.Y. Saito, M. Okuda, M. Tomita, T. Hayashi, Extrusion of single-wall carbon nanotubes via formation of small particles condensed near an arc evaporation source. Chemical Physics letters, 236 (1995) 419.
72.Y. Saito, M. Okuda, N. Fujmoto, T. Yoshikawa, M. Tomita, T. Hayashi, Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation. Jpn. J. Appl. Phy., 33 (1994) L-526.
73.T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, Self-Assembly of Tubular Fullerenes. J. Phys. Chem. 99 (1995) 10694.
74.Andreas Thess, Roland Lee, Pavel Nikolaev, Hongjie Dai, Pierre Petit, Jerome Robert, Chunhui Xu, Young Hee Lee, Seong Gon Kim, Andrew G. Rinzler, Daniel T. Colbert, Gustavo E. Scuseria, David Tománek, John E. Fischer, Richard E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes. Science 273 (1996) 483.
75.T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243 (1995) 49.
76.M. Jung, K.Y. Eun, J.K. Lee, Y.J. Baik, K.R. Lee, J.W. Park, Growth of carbon nanotubes by chemical vapor deposition. Diamond and Related Materials 10 (2001) 1235.
77.S. Xie, W. Li, Z. Pan, B. Chang, L. Sun, Carbon nanotube arrays. Mater. Sci. Eng. A 286 (2000) 11.
78.X.H. Chen, S.Q. Feng, Y. Ding, J.C. Peng, Z.Z. Chen, The formation conditions of carbon nanotubes array based on FeNi alloy island films. Thin Solid Films 339 (1999) 6.
79.C.J. Lee, J. Park, S.Y. Kang, J.H. Lee, Growth of well-aligned carbon nanotubes on a large area of Co–Ni co-deposited silicon oxide substrate by thermal chemical vapor deposition. Chem. Phys. Lett. 323 (2000) 554.
80.C.J. Lee, J.H. Park, J. Park, Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 323 (2000) 560.
81.N. Grobert, M. Terrones, S. Trasobares, K. Kordatos, H. Terrones, J. Olivares, J.P. Zhang, Ph. Redlich, W.K. Hsu, C.L. Reeves, D.J. Wallis, Y.Q. Zhu, J.P.Hare, A.J. Pidduck, H.W.Kroto, D.R.M. Walton, A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates. Appl. Phys. A 70 (2000) 175.
82.M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, D. R. M. Walton, Controlled production of aligned-nanotube bundles. Nature 388 (1997) 52.
83.M. Terrones, N Grobert, J. P. Zhang, H. Terrones, J. Olivares, W. K. Hsu, J. P. Hare, A. K. Cheetham, H. W. Kroto, D. R. M. Walton. Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chem. Phys. Lett. 285 (1998) 299.
84.N. Krishnankutty, C. Park, N.M. Rodriguez, R.T.K. Baker, The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene. Catalysis Today 37 (1997) 295.
85.N.M. Rodriguez, M.S. Kim, F. Tortin, I. Mochida, R.T.K. Baker, Carbon deposition on iron-nickel alloy particles. Appl. Catalysis A 148 (1997) 265.
86.C.J. Lee, J. Park, J.M. Kim, Y. Huh, J.Y. Lee, K.S. No, Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst. Chem. Phys. Lett. 327 (2000) 277.
87.K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Appl. Catalysis A, 199 (2000) 245.
88.W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-Scale Synthesis of Aligned Carbon Nanotubes. Science 274 (1996) 1701.
89.Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang, Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chem. Phys. Lett. 299 (1999) 97.
90.J.Li, C. Papadopoulos, M. Xu, M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 75 (1999) 367.
91.J.Li, C. Papadopoulos, J. Xu, Highly-ordered carbon nanotube arrays for electronics applications. Nature 402 (1999) 253.
92.Yang Y.Y., Huang S.M., He H.Z., Mau A.W.H., Dai L.M., Patterned growth of well-aligned carbon nanotubes: A photolithographic approach. J. American Chemical Society 121 (1999) 10832.
93.S. Huang, L. Dai, A.W.H. Mau, Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films. J. Physical Chemistry B 103 (1999) 4223.
94.D.R. Lide, H.P.R. Frederikse, Handbook of Chemistry and Physics 75th, CRC Press, London (1995) 51-52.
95.P.E. Nolan, M.J. Schabel, D.C. Lynch, Hydrogen control of carbon deposit morphology. Carbon 33 (1995) 79.
96.徐逸明, 化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究, 國立成功大學化學工程研究所博士論文, 2001.
97.Y.H. Wang, J. Lin, C.H. A. Huan, G.S. Chen, Synthesis of large area aligned carbon nanotube arrays from C2H2–H2 mixture by rf plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 79 (2001) 680.
98.K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79 (2001) 1534.
99.H. Wang, J. Lin, C.H.A. Huang, P. Dong, J. He, S.H. Tang, W.K. Eng, T.L.J. Thong, Controlled synthesis of aligned carbon nanotube arrays on catalyst patterned silicon substrates by plasma-enhanced chemical vapor deposition. Applied Surface Science 181 (2001) 248.
100.寇崇善, 微波電漿源之應用, 九十年度微波加熱與乾燥技術研討會.
101.M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 77 (2000) 3468.
102.C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77 (2000) 2767.
103.Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G. Park, W.B. Choi, N.S. Lee, J.M. Kim, Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 76 (2000) 2367.
104.C. Bower, W. Zhu, S. Jin, O. Zhou, Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77 (2000) 830.
105.Y.S. Woo, D.Y. Jeon, I.T. Han, N.S. Lee, J.E. Jung, J.M. Kim, In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition. Diamond and Related Materials 11 (2002) 59
106.Y.C. Choi, D.J. Bae7, Y.H. Lee, B.S. Lee, I.T. Han, W.B.Choi, N.S. Lee, J.M. Kim, Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Synthetic Metals 108 (2000) 159.
107.Anne-Claire Dupuis, The catalyst in the CCVD of carbon nanotubes—a review. Progress in Materials Science 50 (2005) 929-961.
108.Sinnott S.B., Andrews R., Qian D., Rao A.M., Mao Z., Dickey E.C., Derbyshire F., Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett. 315 (1999) 25-30.
109.C. Emmenegger, J.M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Zu¨ttel, L. Schlapbach, Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism. Carbon 41 (2003) 539-547.
110.Cassel A.M., Raymakers J.A., Kong J., Dai H., Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes. J. Phys. Chem. B. 103 (1999) 6484.
111.Chen P., Zhang H.B., Lin G.D., Tsai K.R., Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni-MgO Catalyst. Carbon 35 (1997) 1495.
112.Dai H., Rinzier A.G., Nikolaev P., Thess A., Colbert D.T., Smalley R.E., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260 (1996) 471.
113.Peng Xiang Hou, Shuo Bai, Chang Liu, Hui Ming Cheng, Observations of novel carbon nanotubes with multiple hollow cores. Carbon 41 (2003) n13 2477-2480.
114.Klinke C, Bonard J-M, Kern K, Comparative study of the catalytic growth of patterned carbon nanotube films. Surf. Sci. 492 (2001) 195-201.
115.Wang, X., Hu Z., Chen X., Chen Y., Preparation of carbon nanotubes and nano-particles by microwave plasma-enhanced chemical vapor deposition. Scripta Materialia, 44 (2001) n8-9 1567-1570.
116.Fan Y.Y., Li F., Cheng H.M., Su Y.D., Shen Z.H., Preparation, morphology and microstructure of diameter-controllable vapor-grown carbon nanofibers. J. Mater. Res. 13 (1998) 2342.
117.Cheol Jin Lee, Jeunghee Park, Jae Myung Kim, Yoon Huh, Jeong Yong Lee, Kwang Soo No, Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst. Chemical Physics letters 327 (2000) 277-283.
118.Padmakar D. Kichambare, Dali Qian, Elizabeth. C. Dickey, Craig A. Grimes, Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene. Carbon 40 (2002) 1903-1909.
119.Weizhong Qian, Tang Liu, Zhanwen Wang, Hao Yu, Zhifei Li, Fei Wei, Guohua Luo, Effect of adding nickel to iron–alumina catalysts on the morphology of as-grown carbon nanotubes. Carbon 41 (2003) 2487-2493.
120.U. Starke, W. Weiss, M. Kutschera, R. Bandorf, K. Heinz, High quality iron silicide films by simultaneous deposition of iron and silicon on Si(111). J. Appl. Phys. 91 (2002) 6154.
121.J. Diaz, S.M. Valvidares, R. Morales, J.M. Alameda, Study of the magnetic anisotropy of amorphous Fe1xSix deposited by magnetron sputtering. J. Magnetism and Magnetic Mater. 242-245 (2002) 166.
122.Y. Shimada, H. Kojima, Magnetic properties of amorphous Fe-Si thin films. J Appl. Phys. 47 (1976) 4156.
123.S.K. Sharma, H.P. Geserich, W.A. Theiner, Phys. Stat. Sol. (a) 32 (1975) 467.
124.H.P. Geserich, S.K. Sharma, W.A. Theiner, Some structural, electrical and optical investigations on a new amorphous material: FeSi2. Phil. Mag. 27 (1973) 1001.
125.N.A. Blum, C. Feldmann, The crystallization of amorphous silicon films. J. Non-crystall. Solids 11 (1972) 242.
126.L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Effect of Substrate Temperature on Crystallization of Fe-33 At.% Si Amorphous Films. Phys. Metals 4 (1983) n5 965.
127.L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Crystallization of Amorphous Fe-33 At.% Si Films.Phys. Metals 3 (1982) n2 285.
128.L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Crystallization of Amorphous Fe--Si Films. Phys. Stat. Sol. (a) 91 (1985) 371.
129.J.M. Alameda, M.C. Contreras, M. Torres, A.G. Arche, Analysis of magnetization rotational processes in amorphous and crystallized Fe-Si thin films. J. Magnetism and Magnetic Mater. 62 (1986) 215.
130.N.R. Baldwin, D.G. Ivey, Iron slicide formation in bulk iron-silicon diffusion couples. J. Phase Equilibria and Diffusion 16 (1995) n4 300.
131.T. de los Arcos, F. Vonau, M.G. Garnier, V. Thommen, P. Oelhafen, M. Dúggelin, D. Mathis, R. Guggenheim, Influence of iron–silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition. Appl. Phys. Lett. 80 (2002) 2383.
132.L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth. Chem. Phys. Lett. 348 (2001) 368.
133.L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B. Chen, J. Han, M. Meyyappan, Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys. 91 (2002) 6027.
134.K.M. Lee, H.J. Han, S. Choi, K.H. Park, S.G. Oh, S. Lee, K.H. Koh, Effects of metal buffer layers on the hot filament chemical vapor deposition of nanostructured carbon films. J. Vac. Sci. Technol. B 21 (2003) 623.
135.Kyung Ho Park, Kyung Moon Lee, Seungho Choi, Soonil Lee, Ken Ha Koh, Field electron emission from patterned nanostructured carbon films on sodalime glass substrates. Carbon 42 (2004) 187.
136.Teresa de los Arcos, M. Gunnar Garnier, Peter Oelhafen, Daniel Mathys, Jin Won Seo, Concepción Domingo, José Vicente García-Ramos, Santiago Sánchez-Cortés, Strong influence of buffer layer type on carbon nanotube characteristics. Carbon 42 (2004) 187-190
137.Vladimir I. Merkulov, Anatoli V. Melechko, Michael A. Guillorn, Douglas H. Lowndes, and Michael L. Simpson, Effects of spatial separation on the growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett 80 (2002) 476
138.Teo K.BK., Chhowalla M., Amaratunga G.A.J., Milne W.I., Pirio G.,Legagneux P., Wyczisk F., Olivier J., Pribat D., Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy. J. Vac. Sci. Technol. B 20 (2002) 116
139.L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth. Chem. Phys. Lett. 348 (2001) 368
140.Delzeit, Lance; McAninch, Ian; Cruden, Brett A.; Hash, David; Chen, Bin; Han, Jie; Meyyappan, M., Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J Appl Phys 91 (2002) 6027
141.鄧福友, 以鋁基層促進奈米碳管之成長, 國立成功大學材料科學及工程學系, 碩士論文, 2007.
142.汪建民主編,材料分析,中國材料科學學會,新竹市,民國87年。
143.H. Hiura, T.W. Ebbesen, K. Tanigaki, Raman studies of carbon nanotubes. Chem. Phys. Lett 202 (1993) 509.
144.P.C. Eklund, C. Brabec, M. Buongiorno, A. Maiti, C. Roland, B.I. Yakobson, Theory of growth andmechanical properties of nanotubes. Appl. Phys. A-Mater. 67 (1998) 39.
145.C. X. XU and X. W. SUN, Strategies to Improve Field Emission Performance of Nanostructural ZnO. Journal of Electronic Materials, 36 (2007) n5 543.
146.L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76 (2000) 2071
147.Hyun Young Jung, Sung Mi Jung, Lily Kim, Jung Sang Suh, A simple method to control the diameter of carbon nanotubes and the effect of the diameter in field emission. Carbon 46 (2008) 969-973.
148.H. Wang, J. Lin, C.H.A. Huang, P. Dong, J. He, S.H. Tang, W.K. Eng, T.L.J. Thong, Controlled synthesis of aligned carbon nanotube arrays on catalyst patterned silicon substrates by plasma-enhanced chemical vapor deposition. Applied Surface Science 181 (2001) 248.
149.M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 77 (2000) 3468.
150.C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77 (2000) 2767.
151.Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G. Park, W.B. Choi, N.S. Lee, J.M. Kim, Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 76 (2000) 2367.
152.廖坤厚, 催化劑特性對準直性奈米碳管成長之影響, 國立成功大學材料科學及工程學系, 博士論文, 2006.
153.N.M. Rodriguez, A review of catalytically grown carbon nanoflbers. J. Mater. Res. 8 (1993) 3233.
154.Jyh Ming Ting, Shih Wei Hung, Growth of CNTs on hydrogen plasma etched Fe–Si thin films. Carbon, 45 (2007) n5 1119-1121.
155.Jyh Ming Ting, Shih Wei Hung, Kun Hou Liao, ESC, 2008, in revision.
156.S.H. Lee, P.S. Alegaonkar, U.H. Lee, A.S. Berdinsky, J.B. Yoo, Y.U. Kwon , C.Y. Park, Formation of buried-layer CNTs in porous SiO2 templates. Diamond Relat. Mater. 16 (2007) 326.
157.Shaoming Huang, Growing carbon nanotubes on patterned submicron-size SiO2 spheres. Carbon 41 (2003) 2347.
158.P.V. Huong, R. Cavagnat, P.M. Ajayan, O. Stephan, Temperature-dependent vibrational spectra of carbon nanotubes. Phys. Rev. B 51 (1995) 10048.
159.Y. Ando, X. Zhao, H. Shimoyama, Structure analysis of purified multiwalled carbon nanotubes. Carbon 39 (2001) 569.
160.M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 59 (1999) R6585.
161.I. Pocsik, M. Hundhausen, M. Koos, L. Ley, Origin of the D peak in the Raman spectrum of microcrystalline graphite. J. Non-Cryst. Solids 227-230 (1998) 1083.
162.M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang, Y. Qian, Benzene-thermal route to carbon nanotubes at a moderate temperature. Carbon 40 (2002) 2961.
163.W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, S. Xie, Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor. Appl. Phys. Lett. 70 (1997) 2684.
164.J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S.R.P. Silva, Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80 (1996) n1 440.
165.M.A. Tamor, W.C. Vassell, Raman “fingerprinting” of amorphous carbon films. J. Appl. Phys. 76(6) (1994) 3823.
166.A.L. Paul, F.S. Kurt, L.M. Brian, W.N. Ken, R.A. Neal, Oxide formation on Fe and Ti thin films and on Fe thin films modified with ultrathin layers of Ti. Surface and Interface Analysis 17(1991) n1 48-56.
167.M Selleby, An assessment of the Fe-O-Si system. Metallurgical and Materials Transactions B, 28 (1997) 563-576.
168.Hideki Sato, Yasunori Hori, Koichi Hata, Seko Kazuyuki, Nakahara Hitoshi, Saito Yahachi, Effect of catalyst oxidation on the growth of carbon nanotubes by thermal chemical vapor deposition. Journal of Applied Physics, 100 (2006) n10 104321.
169.Wei Chuan Fang, Jin Hua Huang, Li Chyong Chen, Kuei Hsien Chen, Yuh Long Oliver Su, Influence of catalyst oxidation on the growth of nitrogen-containing carbon nanotubes for energy generation and storage applications. Diamond and Related Materials, 16 (2007) 1140-1143.
170.Shoushan Fan, Michael G Chapline, Nathan R Franklin, Thomas W Tombler, Alan M Cassell and Hongjie Dai, Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science 283(1999) 512.
171.U. Kim, R. Pcionek, D.M. Aslam, D. Tomanek, Synthesis of high-density carbon nanotube films by microwave plasma chemical vapor deposition. Diamond Rel. Mater. 10 (2001) 1947.
172.Y.C. Choi, D.J. Bae, Y.H. Lee, B.S. Lee, G.S. Park, W.B. Choi, N.S. Lee, J.M. Kim, Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature. J. Vac. Sci. Technol. A 18 (2000) 1864.