簡易檢索 / 詳目顯示

研究生: 陳彩蓉
Chen, Tsai-Jung
論文名稱: 非線性波動方程解的存在性與雙線性估計之研究
Research on Bilinear Estimates and Existence of Nonlinear Wave Equations
指導教授: 方永富
Fang, Yung-Fu
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 67
中文關鍵詞: 非線性波動方程解存在性雙線性
外文關鍵詞: Dirac-Klein-Gordon equation, Davey-Stewartson system
相關次數: 點閱:100下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中我們是採取跟Bourgain不同的方法去對非線性項做估計。我們在第一到三章是一開始是利用fourier transform先把解直接比出來,再利用非線性項有null form structure去估計非線性項並且利用charge 有守恆律,由此可以得知DKG方程式有唯一Global 的解。
    從第四章到第十一章我們是採取 Klainerman和 Machedon 的想法並且改進齊次波方程的Bilinear estimate。
    最後在第十二章到第十四章我們去考慮另一個方程式Davey-Stewartson system on a cycle。

    The purpose of this work is to state a new proof of null form estimate, see [B], by proving a solution representation of DKG equations which is more simple. In this way, we give an interpretation of the null form structure depicted within the nonlinear term ψγ5ψ, and it is different form that in [B]. The nonlinear term has the null form structure, see [KM].
    The approach that we adopt in this work is as follow : In chapter one, we derive the conservation law of charge,

    ∫∣x∣2dx = constant (0.1)

    which can be applied to derive the global solution existence for the DKG equations. Second, the solution representation has derived in fourier transform, then we write down the direct solution representation. Third, we will use it to estimate the nonlinear form ψγ5ψ, and the derivations of some necessary estimates become straight forward in the chapter two. Finally, we can prove the local and global existence results of DKG equations with ψ0∊L2, φ0∊H1, and φ1∊L2, which are called charge class solutions in chapter three. We use the idea of Klainerman and Machedon [KM1] and then the proof of the bilinear space-time estimates for homogeneous wave equation in [KM2] has been modified from chapter four to chapter eleven. We consider the Cauchy problem of the following Davey-Stewartson system on a cycle from the chapter twelve to the chapter fourteen. Now, so I am interested in DKG. I hope I can do more deeply research.

    1. Introduction 3 2. Estimate 7 3. Existence 10 4. classical Strichartz inequality 16 5. Bilinear estimate 25 6. Integration on ellipsoid and hyperboloid 28 7. Bilinear estimate 36 8. Proof for case 1 37 9. Proof for the case 2 38 10. Bilinear estimate for n=2 40 11. Product rules for Hyperbolic Sobolev spaces associated to the wave equation 46 12. Introduction 50 13. Local Existence 53 14. Global Existence 62 References 66

    [B1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications
    and nonlinear evolution equations. Part I Schrodinger equations, Geomertic and functional Anal.3,
    (1993)107-155.
    [B] N. Bournaveas, New Proof of Global Existence for the Dirac Klein-Gordon Equations in One space
    Dimension, J. Funct. Anal.173(2000),203-213.
    [Bo2] J.Bourgain, Exponential sums and nonlinear Schrodinger equations, in this issue.
    [Bo3] J.Bourgain, On Λ(p)-subsets of squares, Israel J. Math. 67:3 (1989),291-311.
    [B2] . Bourgain,On the growth in time of higher norms of smooth solutions of Hamitiltonian PDE, Int.
    Math. Res. Note 6 (1996), 277-304.
    [BP] E.Bombieri,J.Pila, The number of integral points on arcs and ovals, Duck Math. J. 59, 337-357
    (1989).
    [CSS] W. Graig, U. Schanz and C. Sulem The modulation regime of three-dimensional water wave and
    Davey-Stewartson system, Ann. Inst. Henri poincar´e 14 (1997), 615-667.
    [CW] T.Cazenave, F.Weissler, The Cauchy problem for the critical nonlinear Schrodinger equation in Hs
    ,Nonlinear Analysis, Theory Methods and Applications 14:10 (1990), 807-836
    [C] J.M Chadam, Global solutions of the Cauchy problem for the (classical)Maxwell -Dirac equations in
    one space dimension,J Funct. Anal.13(1973),173-184.
    [DS] A Davey K Stewartson, On three-dimensional packets of surface wave Proc. R. Soc. Lond. A 338
    101-110
    [F] Y. Fang A Direct Proof of Global Existence for the Dirac-Klein-Gordon Equations in One Space
    Dimension
    [FK] D. Foschi and S. Klainerman, Homogeneous L2 bilinear estimates for wave equation.
    [FG] Y.F. Fang and M. Grillakis Existence and Uniqueness for Boussinesq Type Equations on a Circle,
    Comm. PDE 21(1996),1253-1277.
    [GW] Boling Guo and Baoxiang WANG, The Cauchy Problem for the Davery-Stewartson Systems,
    preprint.
    [GHL] Gegenhasi Xing-Biao Hu Decio Levi, On a discrete Davey-Stewartson system
    [Gr] E.Grosswald, Representations of Intergers as Sum of Squares, Spring-Velag(1985)
    [H] Hormander L, The Analysis of Linear Partial Differential Operators. I, Springer Study Edition, Distribution
    Theory and Fourier Analysis
    [K] T.Kato, On nonlinear Schrodinger equations, Ann. Inst. H. 46 (1987), 113-129.
    [KM] S. Klainerman and M. Machedon, Remark on Stricharz type inequalities. Int.Math. Res. Not. no.
    5(1996).201-220.
    [KM2] S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equations with finite energy, Duke
    Math. J. 74(1994),19-44.
    [K3] S. Klainerman and M. Machedon, Space-time estimates for the null form and the local exitence
    theorem, Comm. Pure Appl. Math.46(1993),1221-1268.
    [LeRSp] J. Lebowitz, H. Rose, E. Speer Mechanics of the Nonlinear Schrodinger equations,J.Statistical
    Physics 50:3/4 (1988), 657-687.
    [S] I.E. Segal, Non-linear semigroups, Ann. of Math. 78(1963),339-364.
    [SS] J. Shatah and M. Struwe Geometric wave equations, Courant Lecture Notes in Mathematics, 1977.
    [SS] Catherine Sulem Pierre-Louis Sulem, The nonlinear Schrodinger Equation
    [St] R.Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave
    equations,Duke Math. J. 44(1977),705-714.
    [T] Michael E.Taylor, Partial Differential Equations II
    [YCM] YVONNE CHOQUET-BRUHAT, DEWITT-MORETTE and MARGARET DILLARD-BLEICK,
    ANALYSIS, MANIFOLDS AND PHYSICS
    [Z] Y. Zhang, Regularity of weak solution to a Two-Dimensional Modified Dirac-Klein-Gordon System of
    Equations, commun. Math. Phys. 151(1993),67-87.

    下載圖示 校內:2010-07-10公開
    校外:2010-07-10公開
    QR CODE