| 研究生: |
陳彩蓉 Chen, Tsai-Jung |
|---|---|
| 論文名稱: |
非線性波動方程解的存在性與雙線性估計之研究 Research on Bilinear Estimates and Existence of Nonlinear Wave Equations |
| 指導教授: |
方永富
Fang, Yung-Fu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 非線性波動方程解 、存在性 、雙線性 |
| 外文關鍵詞: | Dirac-Klein-Gordon equation, Davey-Stewartson system |
| 相關次數: | 點閱:100 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中我們是採取跟Bourgain不同的方法去對非線性項做估計。我們在第一到三章是一開始是利用fourier transform先把解直接比出來,再利用非線性項有null form structure去估計非線性項並且利用charge 有守恆律,由此可以得知DKG方程式有唯一Global 的解。
從第四章到第十一章我們是採取 Klainerman和 Machedon 的想法並且改進齊次波方程的Bilinear estimate。
最後在第十二章到第十四章我們去考慮另一個方程式Davey-Stewartson system on a cycle。
The purpose of this work is to state a new proof of null form estimate, see [B], by proving a solution representation of DKG equations which is more simple. In this way, we give an interpretation of the null form structure depicted within the nonlinear term ψγ5ψ, and it is different form that in [B]. The nonlinear term has the null form structure, see [KM].
The approach that we adopt in this work is as follow : In chapter one, we derive the conservation law of charge,
∫∣x∣2dx = constant (0.1)
which can be applied to derive the global solution existence for the DKG equations. Second, the solution representation has derived in fourier transform, then we write down the direct solution representation. Third, we will use it to estimate the nonlinear form ψγ5ψ, and the derivations of some necessary estimates become straight forward in the chapter two. Finally, we can prove the local and global existence results of DKG equations with ψ0∊L2, φ0∊H1, and φ1∊L2, which are called charge class solutions in chapter three. We use the idea of Klainerman and Machedon [KM1] and then the proof of the bilinear space-time estimates for homogeneous wave equation in [KM2] has been modified from chapter four to chapter eleven. We consider the Cauchy problem of the following Davey-Stewartson system on a cycle from the chapter twelve to the chapter fourteen. Now, so I am interested in DKG. I hope I can do more deeply research.
[B1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications
and nonlinear evolution equations. Part I Schrodinger equations, Geomertic and functional Anal.3,
(1993)107-155.
[B] N. Bournaveas, New Proof of Global Existence for the Dirac Klein-Gordon Equations in One space
Dimension, J. Funct. Anal.173(2000),203-213.
[Bo2] J.Bourgain, Exponential sums and nonlinear Schrodinger equations, in this issue.
[Bo3] J.Bourgain, On Λ(p)-subsets of squares, Israel J. Math. 67:3 (1989),291-311.
[B2] . Bourgain,On the growth in time of higher norms of smooth solutions of Hamitiltonian PDE, Int.
Math. Res. Note 6 (1996), 277-304.
[BP] E.Bombieri,J.Pila, The number of integral points on arcs and ovals, Duck Math. J. 59, 337-357
(1989).
[CSS] W. Graig, U. Schanz and C. Sulem The modulation regime of three-dimensional water wave and
Davey-Stewartson system, Ann. Inst. Henri poincar´e 14 (1997), 615-667.
[CW] T.Cazenave, F.Weissler, The Cauchy problem for the critical nonlinear Schrodinger equation in Hs
,Nonlinear Analysis, Theory Methods and Applications 14:10 (1990), 807-836
[C] J.M Chadam, Global solutions of the Cauchy problem for the (classical)Maxwell -Dirac equations in
one space dimension,J Funct. Anal.13(1973),173-184.
[DS] A Davey K Stewartson, On three-dimensional packets of surface wave Proc. R. Soc. Lond. A 338
101-110
[F] Y. Fang A Direct Proof of Global Existence for the Dirac-Klein-Gordon Equations in One Space
Dimension
[FK] D. Foschi and S. Klainerman, Homogeneous L2 bilinear estimates for wave equation.
[FG] Y.F. Fang and M. Grillakis Existence and Uniqueness for Boussinesq Type Equations on a Circle,
Comm. PDE 21(1996),1253-1277.
[GW] Boling Guo and Baoxiang WANG, The Cauchy Problem for the Davery-Stewartson Systems,
preprint.
[GHL] Gegenhasi Xing-Biao Hu Decio Levi, On a discrete Davey-Stewartson system
[Gr] E.Grosswald, Representations of Intergers as Sum of Squares, Spring-Velag(1985)
[H] Hormander L, The Analysis of Linear Partial Differential Operators. I, Springer Study Edition, Distribution
Theory and Fourier Analysis
[K] T.Kato, On nonlinear Schrodinger equations, Ann. Inst. H. 46 (1987), 113-129.
[KM] S. Klainerman and M. Machedon, Remark on Stricharz type inequalities. Int.Math. Res. Not. no.
5(1996).201-220.
[KM2] S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equations with finite energy, Duke
Math. J. 74(1994),19-44.
[K3] S. Klainerman and M. Machedon, Space-time estimates for the null form and the local exitence
theorem, Comm. Pure Appl. Math.46(1993),1221-1268.
[LeRSp] J. Lebowitz, H. Rose, E. Speer Mechanics of the Nonlinear Schrodinger equations,J.Statistical
Physics 50:3/4 (1988), 657-687.
[S] I.E. Segal, Non-linear semigroups, Ann. of Math. 78(1963),339-364.
[SS] J. Shatah and M. Struwe Geometric wave equations, Courant Lecture Notes in Mathematics, 1977.
[SS] Catherine Sulem Pierre-Louis Sulem, The nonlinear Schrodinger Equation
[St] R.Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave
equations,Duke Math. J. 44(1977),705-714.
[T] Michael E.Taylor, Partial Differential Equations II
[YCM] YVONNE CHOQUET-BRUHAT, DEWITT-MORETTE and MARGARET DILLARD-BLEICK,
ANALYSIS, MANIFOLDS AND PHYSICS
[Z] Y. Zhang, Regularity of weak solution to a Two-Dimensional Modified Dirac-Klein-Gordon System of
Equations, commun. Math. Phys. 151(1993),67-87.