簡易檢索 / 詳目顯示

研究生: 林思妤
Lin, Sz-Yu
論文名稱: 二維材料薄膜式熱電致冷器的理論分析與設計
Analysis and Design of Thin-Film Thermoelectric Coolers Made of Two-Dimensional Materials
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 太空系統工程研究所
Institute of Space Systems Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 152
中文關鍵詞: 微衛星熱電致冷器二維材料響應曲面法非支配排序基因演算法-Ⅱ
外文關鍵詞: Microsatellite, Thermoelectric coolers, Two-dimensional materials, Response surface method, Non-dominated sorting genetic algorithm-Ⅱ
相關次數: 點閱:33下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微衛星應用快速發展,高密度電子元件在環境嚴苛與空間有限的條件下,散熱問題日益受到重視。熱電致冷器(TEC)因其固態設計、無振動且壽命長等特性,已成為太空熱控制系統中理想的選擇。
    本研究首先探討二維材料作為熱電材料的應用潛力,運用數值模擬結合二維材料所構成之薄膜式TEC進行分析,接著探討幾何參數對致冷器的影響。最後配合實際製程需求,針對縮小後的三層圓形設計進行最佳化分析。
    模擬結果顯示,二維材料MoS2與SnSe因具備高賽貝克係數、優異的導電性與低熱導率,可有效提升致冷性能,使TEC的冷熱端溫差達18.3 °C,約為矽基材料的8倍之多。幾何設計方面,圓形設計因熱流分佈均勻,其冷端溫度可達4.8 °C;而多層結構則能進一步提升最大溫差,提升至45.17 °C,但也造成操作電流的範圍變小。
    另外,結合響應曲面法與非支配排序基因演算法-Ⅱ,針對縮小後的三層圓形TEC進行幾何最佳化。所獲得之帕雷托前緣能依照使用者需求,在致冷性能與材料使用量之間作出適當的取捨與權衡。

    With the growth of microsatellite applications, effective thermal management in compact, harsh environments is crucial. Thermoelectric coolers (TECs), with their solid-state reliability, are ideal for space. This study investigates 2D materials in TECs through thin-film simulations, focusing on geometric design.
    Using MoS2 and SnSe to enhance cooling performance, achieving a ΔT of 18.3 ℃, which is approximately eight times higher than silicon-based TECs. Circular designs and multistage structure further improve cooling, with cold-end temperatures reaching 4.8 ℃ and a maximum ΔT of 45.17 ℃.
    A triple-stage circular TEC was optimized using response surface method and non-dominated sorting genetic algorithm-Ⅱ, producing a pareto front to balance cooling performance and material usage.

    摘要 I 誌謝 XVII 目錄 XVIII 表目錄 XXI 圖目錄 XXII 符號索引 XXV 第一章 前言 1 1.1 研究背景 1 1.2 研究動機 6 1.3 研究目的 7 1.4 數值模擬文獻回顧 8 1.5 論文架構 10 第二章 理論背景 12 2.1 熱電效應 12 2.2 熱電材料 16 2.3 統御方程式 19 第三章 研究方法 22 3.1 數值模擬工具及方法 22 3.2 幾何參數 23 3.3 材料參數 25 3.4 網格建立 29 3.5 邊界條件 30 第四章 結果與討論 31 4.1 幾何參數計算驗證 31 4.2 幾何參數對TEC性能之影響 32 4.3 材料參數對TEC性能之影響 34 4.4 方形設計與圓形設計的比較 35 4.5 不同層數的比較 36 4.6 不同負載下對TEC性能之影響 37 第五章 最佳化分析 38 5.1 最佳化參數及目標函數 38 5.2 分析工具及方法 38 5.3 取樣設計 39 5.4 響應曲面法 41 5.5 非支配排序基因演算法-Ⅱ 46 5.6 最佳化結果 52 第六章 結論 55 參考文獻 58

    [1] L.-J. Gao, H.-J. Xu, X. Zhang, J.-X. Wang, and A.-B. Wang, "Numerical investigation on thermal performance of thermoelectric-cooler integrated cold plate of thermal control liquid loop in spacecraft," International Communications in Heat and Mass Transfer, vol. 142, p. 106620, 2023.
    [2] L. Liu, K. Bao, J. Feng, X. Zhu, H. Wang, X. Zhang, and J. Lin, "Design and analysis of an advanced thermal management system for the solar close observations and proximity experiments spacecraft," Astronomical Techniques and Instruments, vol. 1, pp. 52-61, 2023.
    [3] M. Liu, X. Li, L. Li, S. Zhao, J. Zhu, T. Zhou, Z. Lin, J. Li, B. Sun, and G. Pei, "Sustainable All‐Day Thermoelectric Power Generation From the Hot Sun and Cold Universe," Small, vol. 20, p. 2403020, 2024.
    [4] K. Ersoy, "Review of Electronic Cooling and Thermal Management in Space and Aerospace Applications," Engineering Proceedings, vol. 89, p. 42, 2025.
    [5] V. Singh, S. Sisodia, A. Patel, T. Shah, P. Das, R. Patel, and R. Bhavsar, "Thermoelectric cooler (TEC) based thermal control system for space applications: Numerical study," Applied Thermal Engineering, vol. 224, 120101, 2023.
    [6] N. DeCicco, S. Ulrich, N. Nell, D. Vorobiev, A. Egan, B. Fleming, K. France, and R. Kohnert, "Final Design and Performance of the Colorado Ultraviolet Transit Experiment (CUTE) Detector Thermal System," in 35th Small Satellite Conference, Logan, UT, USA, 2021.
    [7] D. Palaporn, S.-a. Tanusilp, Y. Sun, S. Pinitsoontorn, and K. Kurosaki, "Thermoelectric materials for radioisotope thermoelectric generators," Materials Advances, pp. 5351-5364, 2024.
    [8] N. T. Hung, A. R. Nugraha, T. Yang, and R. Saito, "Confinement effect in thermoelectric properties of two-dimensional materials," MRS Advances, vol. 5, pp. 469-479, 2020.
    [9] Z. Gan, L. Liu, H. Wu, Y. Hao, Y. Shan, X. Wu, and P. K. Chu, "Quantum confinement effects across two-dimensional planes in MoS2 quantum dots," Applied Physics Letters, vol. 106, 2015.
    [10] J. Ballard, M. Hubbard, S.-J. Jung, V. Rojas, R. Ung, J. Suh, M. Kim, J. Lee, J. M. Pierce, and R. Venkatasubramanian, "Nano-engineered thin-film thermoelectric materials enable practical solid-state refrigeration," Nature Communications, vol. 16, pp. 1-9, 2025.
    [11] S. Ashraf, V. Forsberg, C. G. Mattsson, and G. Thungström, "Thermoelectric properties of n-type molybdenum disulfide (MoS2) thin film by using a simple measurement method," Materials, vol. 12, no. 21, p. 3521, 2019.
    [12] M. R. Jobayr and E. M. Salman, "Investigation of the thermoelectric properties of one-layer transition metal dichalcogenides," Chinese Journal of Physics, vol. 74, pp. 270-278, 2021.
    [13] S. Siddique, G. Abbas, M. M. Yaqoob, J. Zhao, R. Chen, J. A. Larsson, Y. Cao, Y. Chen, Z. Zheng, and D. Zhang, "Optimization of Thermoelectric Performance in p‐Type SnSe Crystals Through Localized Lattice Distortions and Band Convergence," Advanced Science, vol. 12, no. 7, p. 2411594, 2025.
    [14] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals," Nature, vol. 508, pp. 373-377, 2014.
    [15] A. Rovera, A. Tancau, N. Boetti, M. D. Dalla Vedova, P. Maggiore, and D. Janner, "Fiber optic sensors for harsh and high radiation environments in aerospace applications," Sensors, vol. 23, 2512, 2023.
    [16] Z. Cingiz, F. Katırcıoğlu, S. Sarıdemir, G. Yıldız, and Y. Çay, "Experimental investigation of the effects of different refrigerants used in the refrigeration system on compressor vibrations and noise," International Advanced Researches and Engineering Journal, vol. 5, pp. 152-162, 2021.
    [17] ANSYS Inc., ANSYS Mechanical User's Guide. Canonsburg, PA, USA: ANSYS, 2021.
    [18] T. Gong, Y. Wu, L. Gao, L. Zhang, J. Li, and T. Ming, "Thermo-mechanical analysis on a compact thermoelectric cooler," Energy, vol. 172, pp. 1211-1224, 2019.
    [19] C. Kim, M.-W. Jeong, S. Kim, S.-H. Oh, S.-Y. Lee, Y.-C. Joo, H. Shen, H. Lee, J. Yoon, and Y. Joo, "Planar-radial structured thermoelectric cooler for local hot spot cooling in mobile electronics," in 2020 IEEE 70th Electronic Components And Technology Conference (ECTC), 2020: IEEE, pp. 2242-2246.
    [20] J. Zhang, H. Zhao, B. Feng, X. Song, X. Zhang, and R. Zhang, "Numerical simulations and optimized design on the performance and thermal stress of a thermoelectric cooler," International Journal of Refrigeration, vol. 146, pp. 314-326, 2023.
    [21] T. Gong, L. Li, M. Shi, G. Hou, L. Kang, L. Gao, and J. Li, "A novel cascaded thin-film thermoelectric cooler for on-chip hotspot cooling," Applied Thermal Engineering, vol. 231, 120968, 2023.
    [22] A. Kumar, S. Bano, B. Govind, A. Bhardwaj, K. Bhatt, and D. Misra, "A review on fundamentals, design and optimization to high ZT of thermoelectric materials for application to thermoelectric technology," Journal of Electronic Materials, vol. 50, pp. 6037-6059, 2021.
    [23] M. Rakshit, D. Jana, and D. Banerjee, "General strategies to improve thermoelectric performance with an emphasis on tin and germanium chalcogenides as thermoelectric materials," Journal of Materials Chemistry A, vol. 10, pp. 6872-6926, 2022.
    [24] Chin-Hsiang Cheng and Hsiu-Wen Chang, "Design of a Thin-Film Micro Thermoelectric Cooler Based on Numerical Simulation," in 2012 3rd International Forum on Heat Transfer (IFHT), 2012.
    [25] S. Shittu, G. Li, X. Zhao, and X. Ma, "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, vol. 268, 115075, 2020.
    [26] P. S. Kiran and S. B. Prakash, "Performance evaluation of thermoelectric cooler," in Recent Trends in Thermal and Fluid Sciences: Select Proceedings of INCOME 2021: Springer, 2022, pp. 99-109.
    [27] D. W. Newbrook, R. Huang, S. P. Richards, S. Sharma, G. Reid, A. L. Hector, and C. K. de Groot, "Mathematical model and optimization of a thin-film thermoelectric generator," Journal of Physics: Energy, vol. 2, 014001, 2019.
    [28] G. S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: basic principles and new materials developments. Springer Science & Business Media, 2001.
    [29] D. R. Lide, Ed. CRC Handbook of Chemistry and Physics, 80th Edition ed. Boca Raton, FL: CRC Press, 1999.
    [30] H. Bartzsch, D. Glöß, B. Böcher, P. Frach, and K. Goedicke, "Properties of SiO2 and Al2O3 films for electrical insulation applications deposited by reactive pulse magnetron sputtering," Surface and Coatings Technology, vol. 174, pp. 774-778, 2003.
    [31] T. Wang, C. Liu, J. Xu, Z. Zhu, E. Liu, Y. Hu, C. Li, and F. Jiang, "Thermoelectric performance of restacked MoS2 nanosheets thin-film," Nanotechnology, vol. 27, 285703, 2016.
    [32] K. Hippalgaonkar, Y. Wang, Y. Ye, D. Y. Qiu, H. Zhu, Y. Wang, J. Moore, S. G. Louie, and X. Zhang, "High thermoelectric power factor in two-dimensional crystals of MoS2," Physical Review B, vol. 95, 115407, 2017.
    [33] J. Oh, Y. Kim, S. Chung, H. Kim, and J. G. Son, "Fabrication of a MoS2/Graphene nanoribbon heterojunction network for improved thermoelectric properties," Advanced Materials Interfaces, vol. 6, 1901333, 2019.
    [34] Y. Yang, D. He, Y. Zhou, S. Wen, and H. Huang, "Electronic and surface modulation of 2D MoS2 nanosheets for an enhancement on flexible thermoelectric property," Nanotechnology, vol. 34, 195401, 2023.
    [35] D. Jiang, Z. Li, Y. Li, C. Wang, Y. Wang, P. Fu, Y. Zhang, and F. Du, "Silica-modified few-layered MoS2 for SWCNT-based thermoelectric materials," Chemical Engineering Journal, vol. 483, 149439, 2024.
    [36] R. Yan, J. R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A. R. Hight Walker, and H. G. Xing, "Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy," ACS Nano, vol. 8, pp. 986-993, 2014.
    [37] K. Ghosh and U. Singisetti, "Thermoelectric transport coefficients in mono-layer MoS2 and WSe2: role of substrate, interface phonons, plasmon, and dynamic screening," Journal of Applied Physics, vol. 118, 2015.
    [38] A. Taube, J. Judek, A. Łapińska, and M. Zdrojek, "Temperature-dependent thermal properties of supported MoS2 monolayers," ACS Applied Materials & Interfaces, vol. 7, pp. 5061-5065, 2015.
    [39] A. N. Gandi and U. Schwingenschlögl, "Thermal conductivity of bulk and monolayer MoS2," Europhysics Letters, vol. 113, 36002, 2016.
    [40] X. Liu and Y.-W. Zhang, "Thermal properties of transition-metal dichalcogenide," Chinese Physics B, vol. 27, 034402, 2018.
    [41] A. K. Gautam, M. Faraz, and N. Khare, "Enhanced thermoelectric properties of MoS2 with the incorporation of reduced graphene oxide (RGO)," Journal of Alloys and Compounds, vol. 838, 155673, 2020.
    [42] I. Pallecchi, N. Manca, B. Patil, L. Pellegrino, and D. Marré, "Review on thermoelectric properties of transition metal dichalcogenides," Nano Futures, vol. 4, 032008, 2020.
    [43] Y. Mao, Y. Fang, K. Yuan, and F. Huang, "Effect of vanadium doping on the thermoelectric properties of MoS2," Journal of Alloys and Compounds, vol. 903, 163921, 2022.
    [44] N. Xin, G. Tang, T. Lan, Y. Li, J. Kou, M. Zhang, X. Zhao, and Y. Nie, "Improving the thermoelectric performance of Cu-doped MoS2 film by band structure modification and microstructural regulation," Applied Surface Science, vol. 611, 155611, 2023.
    [45] Y. Long, F. Li, Y. Ding, Y. Song, L. Wei, and K. Kang, "Effect of lattice defects on electronic structure and thermoelectric properties of 2D monolayer MoS2," Physica E: Low-dimensional Systems and Nanostructures, vol. 161, 115972, 2024.
    [46] P. Phalswal, A. Dey, and P. K. Khanna, "Studies on thermoelectric properties of sonochemically exfoliated MoS2," Materials Chemistry and Physics, vol. 319, 129264, 2024.
    [47] D. Fan, H. Liu, L. Cheng, P. Jiang, J. Shi, and X. Tang, "MoS2 nanoribbons as promising thermoelectric materials," Applied physics letters, vol. 105, 2014.
    [48] W. Huang, X. Luo, C. K. Gan, S. Y. Quek, and G. Liang, "Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2," Physical Chemistry Chemical Physics, vol. 16, pp. 10866-10874, 2014.
    [49] G. Tang, K. Cai, J. Cui, J. Yin, and S. Shen, "Preparation and thermoelectric properties of MoS2/Bi2Te3 nanocomposites," Ceramics International, vol. 42, pp. 17972-17977, 2016.
    [50] S. Ashraf, V. Forsberg, C. G. Mattsson, and G. Thungström, "Thermoelectric properties of n-type molybdenum disulfide (MoS2) thin film by using a simple measurement method," Materials, vol. 12, 3521, 2019.
    [51] M.-S. Kang, S.-Y. Kang, W.-Y. Lee, N.-W. Park, K. C. Kown, S. Choi, G.-S. Kim, J. Nam, K. S. Kim, and E. Saitoh, "Large-scale MoS2 thin films with a chemically formed holey structure for enhanced Seebeck thermopower and their anisotropic properties," Journal of Materials Chemistry A, vol. 8, pp. 8669-8677, 2020.
    [52] S. Kim, C. Lee, Y. S. Lim, and J.-H. Shim, "Investigation for thermoelectric properties of the MoS2 monolayer–graphene heterostructure: density functional theory calculations and electrical transport measurements," ACS Omega, vol. 6, pp. 278-283, 2020.
    [53] W.-Y. Lee, M.-S. Kang, N.-W. Park, G.-S. Kim, H.-W. Jang, E. Saitoh, and S.-K. Lee, "Phase and composition tunable out-of-plane seebeck coefficients for mos2-based films," ACS Applied Electronic Materials, vol. 4, pp. 1576-1582, 2022.
    [54] F. Q. Wang, S. Zhang, J. Yu, and Q. Wang, "Thermoelectric properties of single-layered SnSe sheet," Nanoscale, vol. 7, pp. 15962-15970, 2015.
    [55] Y. X. Chen, Z. H. Ge, M. Yin, D. Feng, X. Q. Huang, W. Zhao, and J. He, "Understanding of the extremely low thermal conductivity in high‐performance polycrystalline SnSe through potassium doping," Advanced Functional Materials, vol. 26, pp. 6836-6845, 2016.
    [56] D. Ibrahim, J.-B. Vaney, S. Sassi, C. Candolfi, V. Ohorodniichuk, P. Levinsky, C. Semprimoschnig, A. Dauscher, and B. Lenoir, "Reinvestigation of the thermal properties of single-crystalline SnSe," Applied Physics Letters, vol. 110, 2017.
    [57] S. Wang, S. Hui, K. Peng, T. P. Bailey, W. Liu, Y. Yan, X. Zhou, X. Tang, and C. Uher, "Low temperature thermoelectric properties of p-type doped single-crystalline SnSe," Applied Physics Letters, vol. 112, 2018.
    [58] L. Cao, J. Pan, H. Zhang, Y. Zhang, Y. Wu, Y.-Y. Lv, X.-j. Yan, J. Zhou, Y. Chen, and S.-h. Yao, "One-order decreased lattice thermal conductivity of SnSe crystals by the introduction of nanometer SnSe2 secondary phase," The Journal of Physical Chemistry C, vol. 123, pp. 27666-27671, 2019.
    [59] L. Chen, W. Zhao, M. Li, G. Yang, S. M. K. N. Islam, D. R. Mitchell, Z. Cheng, and X. Wang, "Graphene inclusion induced ultralow thermal conductivity and improved figure of merit in p-type SnSe," Nanoscale, vol. 12, pp. 12760-12766, 2020.
    [60] Y. Zhao, Y. Cai, L. Zhang, B. Li, G. Zhang, and J. T. Thong, "Thermal transport in 2D semiconductors—considerations for device applications," Advanced Functional Materials, vol. 30, 1903929, 2020.
    [61] K. Kaur, S. A. Khandy, S. Dhiman, U. B. Sharopov, and J. Singh, "Computational prediction of thermoelectric properties of 2D materials," Electronic Structure, vol. 4, 023001, 2022.
    [62] E. Isotta, M. Y. Toriyama, A. H. Adekoya, E. Shupp, G. J. Snyder, and A. Zevalkink, "Effect of Sn oxides on the thermal conductivity of polycrystalline SnSe," Materials Today Physics, vol. 31, 100967, 2023.
    [63] A. Golabek, N. K. Barua, L. T. Menezes, E. Niknam, Z. Yang, and H. Kleinke, "Influence of the Densification Process on the Thermoelectric Properties of p-Type SnSe Co-doped with Na and Cu as well as Na and Ag," ACS Applied Energy Materials, vol. 7, pp. 11852-11858, 2024.
    [64] D. Wan, S. Bai, X. Li, P. Ai, W. Guo, J. Zhang, and S. Tang, "Anharmonicity and weak bonding-driven extraordinary thermoelectric performance in wrinkled SnSe monolayer with low lattice thermal conductivity," Ceramics International, vol. 50, pp. 9591-9603, 2024.
    [65] M. R. Burton, S. Mehraban, D. Beynon, J. McGettrick, T. Watson, N. P. Lavery, and M. J. Carnie, "3D printed SnSe thermoelectric generators with high figure of merit," Advanced Energy Materials, vol. 9, 1900201, 2019.
    [66] Y. Luo, S. Cai, X. Hua, H. Chen, Q. Liang, C. Du, Y. Zheng, J. Shen, J. Xu, and C. Wolverton, "High thermoelectric performance in polycrystalline SnSe via dual‐doping with Ag/Na and nanostructuring with Ag8SnSe6," Advanced Energy Materials, vol. 9, 1803072, 2019.
    [67] X. Lou, S. Li, X. Chen, Q. Zhang, H. Deng, J. Zhang, D. Li, X. Zhang, Y. Zhang, and H. Zeng, "Lattice strain leads to high thermoelectric performance in polycrystalline SnSe," ACS Nano, vol. 15, pp. 8204-8215, 2021.
    [68] C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z.-Z. Luo, H. Lee, B. Ge, Y.-L. Lee, X. Chen, and J. Y. Lee, "Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal," Nature Materials, vol. 20, pp. 1378-1384, 2021.
    [69] S. W. Oxandale, C. Reinke, S. R. Das, and I. El-Kady, "Enhanced thermoelectric performance via quantum confinement in a metal oxide semiconductor field effect transistor for thermal management," Communications Materials, vol. 4, p. 85, 2023.
    [70] K. Lohani, H. Nautiyal, N. Ataollahi, K. Maji, E. Guilmeau, and P. Scardi, "Effects of grain size on the thermoelectric properties of Cu2SnS3: an experimental and first-principles study," ACS Applied Energy Materials, vol. 4, pp. 12604-12612, 2021.
    [71] P. Das, S. Bathula, and S. Gollapudi, "Evaluating the effect of grain size distribution on thermal conductivity of thermoelectric materials," Nano Express, vol. 1, 020036, 2020.
    [72] L. Song, M. Song, Z. Lu, G. Yu, Z. Liang, W. Hou, Q. Liao, and Y. Song, "Recent advances of preparation and application of two-dimension van der Waals heterostructure," Coatings, vol. 12, 1152, 2022.
    [73] S. Masoumi, A. Noori, and A. Pakdel, "Exploring electrical transport in thin film and bulk thermoelectric materials with an automated Seebeck coefficient and resistivity measurement platform," Measurement, vol. 236, 115162, 2024.
    [74] Tsung-Shine Ko, Po-Chen Kuo, Yi-Fan Chen, Shi-Chiang Lo, Sean Wu, Yee-Shin Chang, and Chin-Hsiang Cheng, "Thermoelectric Performance of Bulk−like MoS₂ Thin Films: Fabrication, Characterization, and Seebeck Coefficient Analysis," Journal of Vacuum Science & Technology A, submitted, 2024.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE